Analysis of the Algebraic Side-Channel Attacks

Jean-Charles Faugère Christopher Goyet Guénaël Renault équipe SALSA, CNRS/INRIA/LIP6/UPMC, THALES

6

J.C. Faugère, C. Goyet, G. Renault

COSADE 2011 1/24

Algebraic cryptanalysis

Algebraic Side-Channel Attacks (ASCA)

New kind of attacks recently by Renauld, Standaert and Veyrat-Charvillon (CHES 2009, Inscrypt2009) mixing **Power Analysis** and **algebraic cryptanalysis**

main idea of ASCA

Online Phase: physical leakages measures

- Offline Phase: algebraic attack
 - modeling cipher and additionnal information by a system of equations
 - solving this system

J.C. Faugère, C. Goyet, G. Renault

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very fast (with a SAT-solver)
- can deal with masking countermeasure

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very fast (with a SAT-solver)
- can deal with masking countermeasure

However, the effectiveness depends on

- the device used and the quality of the trace
- the leakage model
- the amount of available information
- the shape of the system of equations (cipher modeling)
- the heuristics used in the SAT-solver
- ...

\rightsquigarrow very difficult to explain and predict results of experiments

Main goal: analysis of algebraic phase

in order to explain the effectiveness of the solving step

Main goal: analysis of algebraic phase

in order to explain the effectiveness of the solving step

Our analysis of algebraic phase

- impact of the oracle model?
- how many oracle queries are needed?
- some queries more valuable than others?
- which cipher intermediate operations to target?

So, we need a more stable and predictable solving method than Sat-solver without heuristics \Longrightarrow Gröbner basis

J.C. Faugère, C. Goyet, G. Renault

Algebraic Side-Channel Attack

Main goal: analysis of algebraic phase

Oracle model:

- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

PRESENT	PRESENT+Oracle
Sat-Solver $= \infty imes$	Sat-Solver $\simeq 1s \checkmark$ (CHES 2009)
Gröbner basis $= \infty imes$	Gröbner basis (F4) ≃ 20min ✓ (our work)

 $\infty:$ more than one day of computation

Sat-Solver = Heuristics \Rightarrow Gröbner basis = Algebraic resolution \Rightarrow theoretical analysis

Global to local study

Global to local study

- S-boxes are the only nonlinear part of many block ciphers
- They give the resistance against algebraic attacks

Main criterion to evaluate the algebraic resistance of a block cipher is the **Algebraic Immunity** of the S-boxes

\Rightarrow We start to study the S-boxes

Algebraic Immunity (Carlet, Courtois, ...)

Main criterion for algebraic attack = Algebraic Immunity

Notations

- Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a *n*-bits S-box.
- X_1, \ldots, X_n and Y_1, \ldots, Y_n respectively its input and output bits.
- $F_i(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$, $i\leq i\leq n$ are the functions defining S

Definition of Algebraic Immunity (Ars, Courtois, Carlet, ...) Let $I_S = \langle \{F_i(X_1, \dots, X_n, Y_1, \dots, Y_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\} \rangle$. Then the **Algebraic Immunity** of S is defined by

$$AI(S) = \min\{deg(P), P \in I_S \setminus \{0\}\}\$$

The number of such lowest degree relations is also an important invariant

Algebraic Immunity (Carlet, Courtois, ...)

How to compute the **Algebraic Immunity** for a given S-box S? It is enough to compute a Gröbner basis with the DRL order of

$$I_{S} = \langle \{F_{i}(X_{1}, \dots, X_{n}, Y_{1}, \dots, Y_{n}), X_{i}^{2} - X_{i}, Y_{i}^{2} - Y_{i}, i \in \{1 \dots n\}\} \rangle$$

Indeed, we have

Prop

The reduced Gröbner basis G_S of I_S with respect to a graded order contains a linear basis of the lowest relations of S (i.e. the polynomials $P \in I_S$ such that deg(P) = AI(S)).

Example with the AES S-box

The Algebraic Immunity of the inverse function over \mathbb{F}_{2^8} (e.g. AES S-box) equals **2**. Indeed, the inverse function is represented by a set of 39 quadratics equations over \mathbb{F}_2 (Courtois 2002)

A new notion of Algebraic Immunity

ASCA context \Rightarrow consider **leakage information**

Notations

For every value ℓ of the leakage model, we denote

• $E_\ell(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ the equations representing the leakage information ℓ

•
$$I_{\ell} = \langle E_{\ell}(X_1, \dots, X_n, Y_1, \dots, Y_n) \cup \{F_i(X_1, \dots, X_n, Y_1, \dots, Y_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\} \rangle$$

Definition of Algebraic Immunity with Leakage

The lowest degree relations in I_{ℓ} are called **Algebraic Immunity With** Leakage ℓ of the S-box S. It is denoted by $AI_L(S, \ell)$ and the number of such relations is denoted by $\#AI_L(S, \ell)$.

Algebraic Immunity with Leakage: HW example

Assumption : leakage L of S gives

- HW of input value
- HW of output value

•
$$\ell = (w_{in}, w_{out})$$

 \Rightarrow the ideal I_{ℓ} contains at least 2 independent linear polynomials:

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_{\ell}$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_{\ell}$$

Results

 $\forall \text{ S-box } S, \text{ and } \forall \ell \in \{0,...,n\}^2$

$$AI_L(S, \ell) = 1$$

$AI_L(S, \ell) \ge 2$

Are these two linear polynomials linearized our S-Box?

J.C. Faugère, C. Goyet, G. Renault

HW example $(\ell = (w_{in}, w_{out}))$

 \Rightarrow the ideal I_{ℓ} contains at least these 2 independent linear polynomials:

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_\ell$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_\ell$$

Does not help enough for solving our system:

- no linear relation between input and output
- substitution layer is always nonlinear

But now, we know that leakages may gives rise to linear equations!! Is there any other more interesting?

HW example $(\ell = (w_{in}, w_{out}))$

Trivial example: $w_{in} = 0$

 \forall S-box S, if $w_{in} = 0$ then $X_1 = X_2 = \cdots = X_n = 0$ and the Y_i are given by

$$Y_1,\ldots,Y_n=S(0,\ldots,0)=y_1,\ldots,y_n$$

 $#AI_L(S, \ell) = 2n$ is maximal with this case and the corresponding S-box is completely described by linear relations

HW example $(\ell = (w_{in}, w_{out}))$

Trivial example: $w_{in} = 0$

 \forall S-box S, if $w_{in} = 0$ then $X_1 = X_2 = \cdots = X_n = 0$ and the Y_i are given by

$$Y_1,\ldots,Y_n=S(0,\ldots,0)=y_1,\ldots,y_n$$

 $#AI_L(S, \ell) = 2n$ is maximal with this case and the corresponding S-box is completely described by linear relations

PRESENT S-box example: $#AI_L(S, (w_{in}, w_{out}))$

wout	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

A lot of interesting linear equations can appear, depending on the leakage value

Another invariant

Definition

 $\forall \text{ S-box } S, \forall \text{ leakage value } \ell \\ \text{we define}$

$$N_S(\ell) = \#\{x \in \mathbb{F}_2^n \text{ s.t. leakage of } S(x) = \ell\}$$

= $\#V(I_\ell)$

Another invariant

Definition

 $\forall \text{ S-box } S, \forall \text{ leakage value } \ell \\ \text{we define} \\$

$$N_S(\ell) = \#\{x \in \mathbb{F}_2^n \text{ s.t. leakage of } S(x) = \ell\}$$

= $\#V(I_\ell)$

Prop

Let n the bus size of S. If $AI_L(S, \ell) = 1$ and $N_S(\ell)$ is non-zero then

$$#AI_L(S,\ell) \ge 2n+1-N_S(\ell)$$

 $N_S(\ell)$ small \rightsquigarrow a lot of linear relations between input and output

Take a look at PRESENT S-box

Assumptions : 8-bits bus and Hamming weight leakage model

Figure: $#AI_L(S, w_{in}, w_{out})$

wout	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Observations

- confirm that small $N_S \Rightarrow$ large $\#AI_S$
- Most of leakages give a lot of linear relations:
 - $\mathbb{E}(\#AI_L) = 7,9$
- We are now able to sort leakages by relevance

Figure: $N_S(w_{in}, w_{out})$

J.C. Faugère, C. Goyet, G. Renault

Take a look at PRESENT S-box

Assumptions : 8-bits bus and Hamming weight leakage model

Figure: $#AI_L(S, w_{in}, w_{out})$

wout	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Observations

- confirm that small $N_S \Rightarrow$ large $\#AI_S$
- Most of leakages give a lot of linear relations:
 - $\mathbb{E}(\#AI_L) = 7,9$
- We are now able to sort leakages by relevance

Figure: $N_S(w_{in}, w_{out})$

J.C. Faugère, C. Goyet, G. Renault

Take a look at PRESENT S-box

Assumptions : 8-bits bus and Hamming DISTANCE leakage model

Definition:

 $d = HD(x,S(x)) = HW(x \oplus S(x))$

HD model :

- $AI_L(d) = 1$
- $#AI_L(d) \ge 1$
- $\mathbb{E}(\#AI_L) = 2,3$

d	0	1	2	3	4	5	6	7	8
$N_S(d)$	0	0	16	56	81	64	30	8	1
$#AI_L(S,d)$	0	0	10	3	1	1	1	9	16

Figure: HD model and PRESENT S-Box

Much less than in HW model

 \rightsquigarrow predict that solving will be much more difficult in this case

Global Study

Solving strategy

- triangular structure \rightarrow blocks of equations (Layers, SBoxes, ...)
- blocks corresponding to Sboxes \rightarrow Gröbner basis of I_ℓ
- polynomial system modeling PRESENT partly linearized

Results:

Successive Gröbner basis computation (F4)

- \rightarrow better control on the degree
- \rightarrow better solving strategy

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher : PRESENT
- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

Because of:

- $AI_L = 1$
- $\mathbb{E}(\#AI_L) = 7,9$
- $\mathbb{P}(\#AI_L \ge 8) \approx \frac{1}{2}$

 \Rightarrow Expected linear relations for one substitution layer ≈ 64

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher : PRESENT
- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

Because of:

- $AI_L = 1$
- $\mathbb{E}(\#AI_L) = 7,9$
- $\mathbb{P}(\#AI_L \ge 8) \approx \frac{1}{2}$

 \Rightarrow Expected linear relations for one substitution layer ≈ 64

Why this attack still work with weaker ASCA assumptions?

- with leakages in only 3 or 4 rounds?
- in unknown plaintext/ciphertext scenario?

Few consecutive leakages or unknown P/C

Going back to the local study:

 $N_S(\ell) \text{ small} \Rightarrow a \text{ lot of linear relations}$ $N_S(\ell) \text{ very small } (\leq 6) \Rightarrow \text{fixed input/output bits!!}$

 \rightsquigarrow subkey bits easily deduced

Experiments - Conclusion

Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments:

- reject of leakages with large N_S
- reject of leakages with small N_S
- no consecutive leaked rounds
- importance of the model: HD example

B			
٢.			
٢.			
٢.			

G

Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments:

- reject of leakages with large N_S
- reject of leakages with small N_S
- no consecutive leaked rounds
- importance of the model: HD example

Analysis is valid with both Gröbner basis and SAT-solver

Conclusion

- New notion of Algebraic Immunity
- Good understanding of influence of leakage information
 - Results of experiments are explained
 - Leakages informations can be sorted by importance

Perspectives

- Identify resistant S-boxes against ASCA and others cryptanalysis (current work with Claude Carlet)
- Study more realistic oracle models
- Dealing with errors