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Recovering the whole secret key in polynomial time

Partial exposure of the secret key:

@ RSA: N = pq can be factored given some bits of p

o Rivest and Shamir (Eurocrypt 1985)
o Coppersmith (Eurocrypt 1996)

e Boneh et al. (Asiacrypt 1998)
o
(]

i—iérrmann and May (Asiacrypt 2008)
@ DSA: discrete logarithm of g¢ given small number of bits of k

e Howgrave-Graham and Smart (2001)
@ Nguyen and Shparlinski (2002)
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o Rivest and Shamir (Eurocrypt 1985)
o Coppersmith (Eurocrypt 1996)

e Boneh et al. (Asiacrypt 1998)
o
(]

i—iérrmann and May (Asiacrypt 2008)
@ DSA: discrete logarithm of g¢ given small number of bits of k

e Howgrave-Graham and Smart (2001)
@ Nguyen and Shparlinski (2002)

iz Take care to power analysis, fault attacks, protocol failures, etc.
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Countermeasures development:

@ unlikely that attacker can determine a set of bits
@ too strong assumption
@ but...
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Countermeasures development:

@ unlikely that attacker can determine a set of bits
@ too strong assumption
@ but...

does an attacker really need to explicitly know some bits ?
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With only an implicit hint: the case of RSA

Implicit factorization
@ introduced by May and Ritzenhofen (PKC 2009)
@ not required to explicitly know some bits
@ an implicit hint may be enough = polynomial factorization
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With only an implicit hint: the case of RSA

Implicit factorization
@ introduced by May and Ritzenhofen (PKC 2009)
@ not required to explicitly know some bits
@ an implicit hint may be enough = polynomial factorization

Let N; = piq; be given RSA moduli.
Implicit Hint was the suspicion that:
number of p;’s share enough bits

= Many practical scenarii proposed (side-channel, design, ...)
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with only an implicit Hint : the case of (EC)DSA

What about (EC)DSA ?

iz gpplication of the May-Ritzenhofen trick to DSA scenario

Proposed Problematic:

Let (M;, S;) be given signed messages from a target with DSA-like
schemes. Assuming some nonces share a portion of their (unknown)
bits:

@ evaluate the complexity to find the secret key

@ possible positions for shared bits? (MSB, LSB, Middle, etc)

Possible applications:

@ fault attacks (unknown bits modification)
@ destroyed register (like in May-Ritzenhofen 2009)
@ malicious modification of random generators (e.g. smart card)

N,
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With only an implicit hint: the case of (EC)DSA

Our results:

@ implicit hint is exploited by lattice method (shortest vector)

@ required shared bits/signatures comparable to explicit methods
(e.g. = 3 shared bits on 100 signed messages)

@ efficient down to 1 shared bit/400 signatures
@ malicious PRNG undetectable (DieHarder & STS testing suite)
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DSA-like schemes

We recall the DSA-style signature scheme:

@ DLP instance:
o let G be a multiplicative group of prime order ¢ (elements of G are

seen as integers)
e with2¥—! < g < 2V, N at least 160

e private key is anintegera € {1,...,qg— 1}
e public key is g* € G, where g is a publicly known generator of G
@ Signature:
e to sign a message m, the signer computes 7 = HASH(m) and
e chooses a random number k € {1,...,q — 1} called the ephemeral
key or nonce
o the signature is the pair (r, s) given by

r=g"'modg and s=k"'(h+ar)modgq
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Our assumptions

To simplify, we choose the size of g equals to N = 160 bits (thus « and
k; are < 2199

Attackers has messages m;(i = 1,...,n) with associated signatures

(i si)

Implicit Hint
all ephemeral keys k; used to signed m; shared ¢ bits between their
MSB/LSB:

ki - kL k,' kM

Notice that k;, k;, ki, and ky; are unknown
but the positions r and 7 are known
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Part Il

Lattice Attack
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki - kL ki kM

0 t 4 160

Polynomial system modeling (two signatures):

kisy = hy+ar; mod g
kosy = hy+ar, mod g
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL ki kM

0 t 4 160

Polynomial system modeling (two signatures):

f (k2% + 2 k)si = By +ar mod g
"\ (kp + 2% +2"ky)sy = hy+ar; mod g
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL ki kM

0 t 4 160

Polynomial system modeling (two signatures):

filkp, ki kyg, @) = hi + ari — (kg + 2'k; + 2" kay)si

S fl(kLakhkM;a) =0 modq
"\ falkr, ko, ky,a) = 0 mod g

Elimination of the variables k; and ky;:
2_’sl_lf1 —2_ts2_1f2 = 2_’(s1_1h1 — sglhz) —|-2_ta(sl_lr1 — sz_lrz) — (k1 — ko)

11/26



Shared MSB and LSB: first lattice

Implicit hypothesis:

ki =KL ki km

Polynomial system modeling (two signatures):
2_’sf1f1 —2_’s;1f2 = 2_t(sf1h1 — sglhz) +2_’a(sf1r1 — sglrz) — (k~1 — k~2)

F(X(),X],Xz) =xoa+x18—xp € Fq[X(),xl,Xz] verifies F(l,a, Ii) =0

@ a=27"(s;'hy —s;'hy) mod g
@ =2 ’(1 ro—s, r2) mod g

o K:<k|—k2)
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = | Kk, ki km

0 t 4 160

Polynomial system modeling (two signatures):

F(x0,x1,x2) = xoa + x1 8 — x2 € Fylxo, x1,x2) verifies F(1,a,x) =0

The set of solutions L of F forms a lattice :

vo=(1,a,r) € L= {(x0,x1,%2) € Z> : xoa +x13—x2 =0 mod g}
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Shared MSB and LSB: first lattice (n > 2 signatures)

Implicit hypothesis:

160 — 0
ki = kL ki kM
0 t / 160

Polynomial system modeling (n > 2 signatures):

0 (modgq)
0 (mod q)

ar +afr — Ko
o3 +afs — k3

ap+aby,—rk, = 0 (mod q)

= 2_’(sf1m1 - sflm,-) mod g, 5; = Z_Z(Sflrl — sflri) mod ¢, k; = k; — k;

vo=(l,a,k2,...,ky) EL
L={(x0,...,%) €Z""" : xo0; + x18; —x; =0 mod q(i =2,...,n)}
Is vy a shortest vector in L?
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Shared MSB and LSB: first lattice (n > 2 signatures)

vo = (l,a,ka,...,ky) €L
L= {(xo,...,xn) ¥/ 1 X004 + x18; —x; = 0 mod q(izZ,...,n)}
Is vy a shortest vector in L?

The lattice L is generated by the row-vectors of the matrix

1 0 ap ... oy
01 B ... By
0

M = 0 0 ¢
00 0 ... g
and (l,a, \,..., \y) - M = vy for some \;.
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Shared MSB and LSB: first lattice (n > 2 signatures)

vo=(1,a,k2,...,k,) €EL
L= {(xo,...,x,,) e 7zl s xo; + x15; —x; = 0 mod q(i:2,...,n)}
Is vy a shortest vector in L?

GA: Gaussian Assumption

Let L be a lattice of dimension d and vy € L. If ||vo||? is smaller than
4_\ol(L) then v, is a shortest vector of L.

2me

= Assumption generally verified in practice (in particular during our
experiments).
= Find conditions on n and ¢ to be under the GA.

14/26



Shared MSB and LSB: first lattice (n > 2 signatures)

vo=(1,a,k2,...,k,) EL
L={(x0,.,%:) €Z""" i xo0; + x1B8i —x;=0 mod q(i=2,...,n)}
Is vy a shortest vector in L?

GA: Gaussian Assumption

If ||vo||? is smaller than 2% Vol(L)5 then v is a shortest vector of L.
Here dimensiond = n + 1.

The lattice L is generated by the row-vectors of the matrix

1 0 ap ... «

01 B ... B
M = 00 g ... 0
00 0 ... ¢g

n—1

VOI(L) = qn—l > 2159(n—1) = VOI(L)HLI > 2318n+1
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Shared MSB and LSB: first lattice (n > 2 signatures)

GA: Gaussian Assumption

If ||vo|[? is smaller than 5L Vol(L)7 then v, is a shortest vector of L.
Here dimensiond =n + 1.

2 n—1

Vol(L) = ¢"~' > 219°0=1) = vol(L)+1 > 23180

The vector vy € L is given by

vo=(1,a,K2,...,Kp)

HV0||2 > a2 > 2318

= o has not a high chance to be short!
= We can suppose a smaller (exhaustive search):

2159—6 <a< 2160—(5
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Shared MSB and LSB: first lattice (n > 2 signatures)

GA: Gaussian Assumption

If ||vo||? is smaller than 2% Vol(L)5 then v is a shortest vector of L.
Here dimensiond = n + 1.

2

Vol(L) = g™ > 2159(n—1) _y Vol(L)#1 > 23182;}

The vector vy € L is given by

Vo = (laaaliza“ '7’@1)

We have 213979 < g < 2100-0 gnd 2159-0 < . < 2160-0 thys

|[vo| > < n - 22(160-8) — 2320-25-+og,(n)

15/26



Shared MSB and LSB: first lattice, first result

Let be given n signatures (r;, s;). Under the following assumptions
@ Gaussian Assumption
° 2159*5 <a< 216075
@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)

Then the secret a can be computed in time C(n + 1, 1 log,(n — 1) + 160)
as soon as

ki:(’)kLl ki |kM‘

t 4 160

320+ (n—1) | 1+ logy(me) — logy("3)

o>
- n+1 2

We denote by C(d, B) the time complexity of computing a shortest
vector of a d-dimensional lattice L defined by vectors with norm of
bit-size bounded by B.
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Shared MSB and LSB: improvement

The lattice L is generated by the row-vectors of the matrix

1 0 an ... «ay
01 B ... By
M=| 00 ¢qg ... O
00 0 ... ¢

and the vector (1,a, \y,..., \,) - M = (L,a,k2,...,K,) = V.

= Cancel the second coefficient of v
1= Considering a new lattice L.
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Shared MSB and LSB: improvement

Let L’ (dimension n) generated by the row-vectors of the matrix

1 ap ... oy
0 B ... Bn
M=10 ¢ 0
0 O q

and the vector (1,a, Ay, ..., \y) - M = (1,52, ..., Ky) = V.

1z The secret a is no more read in the vector vy but in the
transformation matrix.
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Shared MSB and LSB: improvement

Let L’ (dimension n) generated by the row-vectors of the matrix

1 ap ... «n
0 B ... DB
M = 0 ¢ 0
0 O q

and the vector (1,a, A, ..., \y) - M = (1,2, ..., Ky) = V.
We have

HVOHZ < (n _ 1) . 22(160—6) _ 9320—26+log,(n—1)

and by considering the sublattice S ¢ L’ of index ¢ and volume ¢"~!
generated by the first and the last » — 1 row of M’ we deduce

2 n—2

Vol(L) = [/ : S Vol(S) = g2 > 2159(1=2) — voI(L/)» > 23187
q
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Shared MSB and LSB: improvement

Theorem 2
Let be given n signatures (r;, s;). Under the following assumptions
@ Gaussian Assumption

ki:(’)kLl ki |kM‘

t /' 160

® =
@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)

Then the secret a can be computed in time C(n,  log,(n — 1) + 160) as

sSoon as n
L3204+ (-2 1 + log,(me) — log, (;%7)
- n 2

o

Notation

We denote by C(d, B) the time complexity of computing a shortest
vector of a d-dimensional lattice L defined by vectors with norm of
bit-size bounded by B.
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Shared MSB and LSB: improvement bis

By using weighted norm we obtain a better result

(Fose 3%y (0s -y 30)) = 3 iy 22160z 10,0
i=0

= drastically reduce the required number of shared bits § in practice

Let be given n signatures (r;, s;). Under the following assumptions
@ Gaussian Assumption

b=k | & [k
o = 0 ' ¢ 160

@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)

Then the secret a can be computed in time C(n, § log,(n — 1) + 1606) as
soon as

160+ (n —2)  n(1+log,(me))
02— 1 2 1)




Theoretical comparison

100 — : : : :
90 -

80 |
70 -
60 -
50 -
40
30 -
20
10 1
0

6, number of shared bits

0 5 10 15 20 25 30
n, number of messages

Figure : Theoretical bounds of Theorems
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Generalization: shared blocks

General implicit hint:

k= | kio |bi| kit |bj| kij  |by| kis

0 pin Dj t it N

1= More technical but comparable results (see the paper)
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Experimental Results
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Performing the computations

Computation of a shortest vector

This is an NP-hard problem | The complexity C(d, B) is
@ Exponential in d by using Kannan'’s algorithm

@ Polynomial in d and B if vy can be found with LLL (Polynomial
complexity but approximate (exponential 2¢) shortest vector)

1= \We experimented our attack using LLL: we always obtain the
shortest vector, even for large dimension!
iz The computational time is not more than one minute (Magma 2.17)
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Success rates

s n, Number of messages

3] 4] 5] 6 ] 7] 8 ] 9] 10 11

40 0 0 80 100 100 100 100 | 100 | 100

30 0 0 0 3 100 100 100 | 100 | 100

20 0 0 0 0 0 0 83 | 100 | 100

[Time(s) [ <01 [ <01 ] <01]<01]<0I]<0l]<0I] 0I] 0.1]

5 n, Number of messages

170 [ 180 [ 190 ] 200 [ 250 | 300 [ 400 [ 500 [ 600

2 73 80 85 100 100 100 100 | 100 | 100

1 0 2 8 10 35 56 91 99 99

[Time(s) ]| 35] 38| 41] 42] 63| 85| 15] 27 44|

Table : Success rate of LSB attack

Lines with 100 correspond to theoretical minimal values of ¢ for a given
number of messages (columns).

= The second table shows that the attack behaves better in practice!
(In theory an attack can not be mount with § < 3).
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Part IV

Conclusion
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Results and Concluding Remarks

Summary of the results:
i= |attice attack on (EC)DSA using an implicit hint on the nonces

1= Success rate of 100% for our theoretical results using LLL (=
heuristic polynomial time attack)

= Attack behaves better in practice

= The knowledge of the shared bits is not necessary (comparable
results in both cases)

Concluding remarks:

= Backdoor in PRNG using such implicit hint are undetecteble with
Dieharder/STS (see the paper)

1= This attack can be applied mutatis mutandis on ElIGamal or
Schnorr signatures

1= |s it possible to use implicit hints in other cryptosystems?
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