Attacking (EC)DSA Given Only an Implicit Hint SAC 2012

Jean-Charles Faugère¹, Christopher Goyet^{1,2} Guénaël Renault¹

¹: UPMC, INRIA, CNRS, LIP6

²: Thales Communications and Security

August 2012

Part I

Introduction

Partial exposure of the secret key:

- RSA: N = pq can be factored given some bits of p
 - Rivest and Shamir (Eurocrypt 1985)
 - Coppersmith (Eurocrypt 1996)
 - Boneh et al. (Asiacrypt 1998)
 - ...
 - Herrmann and May (Asiacrypt 2008)
- DSA: discrete logarithm of g^k given small number of bits of k
 - Howgrave-Graham and Smart (2001)
 - Nguyen and Shparlinski (2002)
 - ...

Take care to power analysis, fault attacks, protocol failures, etc.

Partial exposure of the secret key:

- RSA: N = pq can be factored given some bits of p
 - Rivest and Shamir (Eurocrypt 1985)
 - Coppersmith (Eurocrypt 1996)
 - Boneh et al. (Asiacrypt 1998)
 - ...
 - Herrmann and May (Asiacrypt 2008)
- DSA: discrete logarithm of g^k given small number of bits of k
 - Howgrave-Graham and Smart (2001)
 - Nguyen and Shparlinski (2002)
 - ...

Take care to power analysis, fault attacks, protocol failures, etc.

Countermeasures development:

- unlikely that attacker can determine a set of bits
- too strong assumption
- but . . .

does an attacker really need to explicitly know some bits ?

Countermeasures development:

- unlikely that attacker can determine a set of bits
- too strong assumption
- but ...

does an attacker really need to explicitly know some bits ?

With only an implicit hint: the case of RSA

Implicit factorization

- introduced by May and Ritzenhofen (PKC 2009)
- not required to explicitly know some bits
- an implicit hint may be enough \Rightarrow polynomial factorization

Let $N_i = p_i q_i$ be given RSA moduli. Implicit Hint was the suspicion that: number of p_i 's **share enough bits**

🖙 Many practical scenarii proposed (side-channel, design, . . .)

Implicit factorization

- introduced by May and Ritzenhofen (PKC 2009)
- not required to explicitly know some bits
- an implicit hint may be enough \Rightarrow polynomial factorization

Let $N_i = p_i q_i$ be given RSA moduli. Implicit Hint was the suspicion that: number of p_i 's **share enough bits**

Many practical scenarii proposed (side-channel, design, ...)

with only an implicit Hint : the case of (EC)DSA

What about (EC)DSA ?

IN application of the May-Ritzenhofen trick to DSA scenario

Proposed Problematic:

Let (M_i, S_i) be given signed messages from a target with DSA-like schemes. Assuming some nonces share a portion of their (unknown) bits:

- evaluate the complexity to find the secret key
- possible positions for shared bits? (MSB, LSB, Middle, etc)

Possible applications:

- fault attacks (unknown bits modification)
- destroyed register (like in May-Ritzenhofen 2009)
- malicious modification of random generators (e.g. smart card)

With only an implicit hint: the case of (EC)DSA

Our results:

- implicit hint is exploited by lattice method (shortest vector)
- required shared bits/signatures comparable to explicit methods (e.g. ≈ 3 shared bits on 100 signed messages)
- efficient down to 1 shared bit/400 signatures
- malicious PRNG undetectable (DieHarder & STS testing suite)

We recall the DSA-style signature scheme:

- DLP instance:
 - let *G* be a multiplicative group of prime order *q* (elements of *G* are seen as integers)
 - with $2^{N-1} \leq q < 2^N$, N at least 160
 - private key is an integer $a \in \{1, \ldots, q-1\}$
 - public key is $g^{\mathbf{a}} \in G$, where g is a publicly known generator of G
- Signature:
 - to sign a message *m*, the signer computes h = HASH(m) and
 - chooses a random number $\mathbf{k} \in \{1, \dots, q-1\}$ called the ephemeral key or nonce
 - the signature is the pair (*r*, *s*) given by

$$r = g^k \mod q$$
 and $s = k^{-1}(h + ar) \mod q$

Our assumptions

To simplify, we choose the size of q equals to N = 160 bits (thus a and k_i are $< 2^{160}$)

Attackers has messages $m_i(i = 1, ..., n)$ with associated signatures (r_i, s_i)

Implicit Hint

all ephemeral keys k_i used to signed m_i shared δ bits between their MSB/LSB:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{160 - \delta}$$

Notice that k_i , \tilde{k}_i , $\mathbf{k_L}$ and $\mathbf{k_M}$ are unknown but the positions *t* and *t'* are known

Part II

Lattice Attack

Implicit hypothesis:

$$k_i = \underbrace{\mathbf{k_L}}_{0 \quad t} \underbrace{\tilde{k}_i \quad \mathbf{k_M}}_{t' \quad 160}$$

Polynomial system modeling (two signatures):

$$\mathcal{S}: \begin{cases} k_1s_1 = h_1 + ar_1 \mod q\\ k_2s_2 = h_2 + ar_2 \mod q \end{cases}$$

Implicit hypothesis:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{t_{60-\delta}}$$

Polynomial system modeling (two signatures):

$$\mathcal{S}: \begin{cases} (k_L + 2^t \tilde{k_1} + 2^{t'} k_M) s_1 &= h_1 + ar_1 \mod q \\ (k_L + 2^t \tilde{k_2} + 2^{t'} k_M) s_2 &= h_2 + ar_2 \mod q \end{cases}$$

Implicit hypothesis:

Polynomial system modeling (two signatures):

$$f_i(k_L, k_i, k_M, a) = h_i + ar_i - (k_L + 2^t \tilde{k}_i + 2^{t'} k_M) s_i$$
$$S : \begin{cases} f_1(k_L, k_1, k_M, a) = 0 \mod q \\ f_2(k_L, k_2, k_M, a) = 0 \mod q \end{cases}$$

Elimination of the variables k_L and k_M : $2^{-t}s_1^{-1}f_1 - 2^{-t}s_2^{-1}f_2 = 2^{-t}(s_1^{-1}h_1 - s_2^{-1}h_2) + 2^{-t}a(s_1^{-1}r_1 - s_2^{-1}r_2) - (\tilde{k_1} - \tilde{k_2})$

Implicit hypothesis:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{t_{60-\delta}}$$

Polynomial system modeling (two signatures): $2^{-t}s_1^{-1}f_1 - 2^{-t}s_2^{-1}f_2 = 2^{-t}(s_1^{-1}h_1 - s_2^{-1}h_2) + 2^{-t}a(s_1^{-1}r_1 - s_2^{-1}r_2) - (\tilde{k_1} - \tilde{k_2})$

 $F(x_0, x_1, x_2) = x_0 \alpha + x_1 \beta - x_2 \in \mathbb{F}_q[x_0, x_1, x_2]$ verifies $F(1, a, \kappa) = 0$

- $\alpha = 2^{-t}(s_1^{-1}h_1 s_2^{-1}h_2) \mod q$
- $\beta = 2^{-t}(s_1^{-1}r_1 s_2^{-1}r_2) \mod q$
- $\kappa = (\tilde{k_1} \tilde{k_2})$

Implicit hypothesis:

$$k_i = \underbrace{\begin{matrix} \overleftarrow{\mathbf{k}_L} & \overleftarrow{\tilde{k}_i} & \mathbf{k_M} \\ 0 & t & t' & 160 \end{matrix}}_{0 & t' & 160}$$

Polynomial system modeling (two signatures):

$$F(x_0, x_1, x_2) = x_0 \alpha + x_1 \beta - x_2 \in \mathbb{F}_q[x_0, x_1, x_2]$$
 verifies $F(1, a, \kappa) = 0$

The set of solutions L of F forms a lattice :

$$v_0 = (1, a, \kappa) \in L = \{ (x_0, x_1, x_2) \in \mathbb{Z}^3 : x_0 \alpha + x_1 \beta - x_2 = 0 \mod q \}$$

Implicit hypothesis:

$$k_i = \underbrace{\begin{matrix} \overset{i_{60-\delta}}{\overleftarrow{k_L}} & \overset{i_{60-\delta}}{\overrightarrow{k_i}} \\ 0 & t & t' & 160 \end{matrix}}_{0 t' 160}$$

Polynomial system modeling (n > 2 signatures):

$$\begin{cases} \alpha_2 + a\beta_2 - \kappa_2 \equiv 0 \pmod{q} \\ \alpha_3 + a\beta_3 - \kappa_3 \equiv 0 \pmod{q} \\ \vdots \vdots \vdots \vdots \vdots \vdots \\ \alpha_n + a\beta_n - \kappa_n \equiv 0 \pmod{q} \end{cases}$$

 $\alpha_i = 2^{-t} (s_1^{-1} m_1 - s_i^{-1} m_i) \bmod q, \ \beta_i = 2^{-t} (s_1^{-1} r_1 - s_i^{-1} r_i) \bmod q, \ \kappa_i = \tilde{\mathbf{k}_1} - \tilde{\mathbf{k}_i}$

$$v_0 = (1, \boldsymbol{a}, \kappa_2, \dots, \kappa_n) \in L$$

$$L = \{ (x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n) \}$$

Is v_0 a shortest vector in *L*?

$$v_0 = (1, a, \kappa_2, \dots, \kappa_n) \in L$$

$$L = \{ (x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n) \}$$

Is v_0 a shortest vector in *L*?

The lattice *L* is generated by the row-vectors of the matrix

$$M = \begin{pmatrix} 1 & 0 & \alpha_2 & \dots & \alpha_n \\ 0 & 1 & \beta_2 & \dots & \beta_n \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{pmatrix}$$

and $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M = v_0$ for some λ_i .

$$v_0 = (1, a, \kappa_2, \dots, \kappa_n) \in L$$

$$L = \{ (x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n) \}$$

Is v_0 a shortest vector in L ?

GA: Gaussian Assumption

Let *L* be a lattice of dimension *d* and $v_0 \in L$. If $||v_0||^2$ is smaller than $\frac{d}{2\pi e} \operatorname{Vol}(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*.

Assumption generally verified in practice (in particular during our experiments).

Find conditions on n and δ to be under the GA.

$$v_0 = (1, a, \kappa_2, \dots, \kappa_n) \in L$$
$$L = \{(x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n)\}$$
Is v_0 a shortest vector in L?

GA: Gaussian Assumption

If $||v_0||^2$ is smaller than $\frac{d}{2\pi e} \operatorname{Vol}(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*. Here dimension d = n + 1.

The lattice *L* is generated by the row-vectors of the matrix

$$M = \begin{pmatrix} 1 & 0 & \alpha_2 & \dots & \alpha_n \\ 0 & 1 & \beta_2 & \dots & \beta_n \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{pmatrix}$$

$$\operatorname{Vol}(L) = q^{n-1} \ge 2^{159(n-1)} \Rightarrow \operatorname{Vol}(L)^{\frac{2}{n+1}} \ge 2^{318\frac{n-1}{n+1}}$$

GA: Gaussian Assumption

If $||v_0||^2$ is smaller than $\frac{d}{2\pi e}$ Vol $(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*. Here dimension d = n + 1.

$$\operatorname{Vol}(L) = q^{n-1} \ge 2^{159(n-1)} \Rightarrow \operatorname{Vol}(L)^{\frac{2}{n+1}} \ge 2^{318\frac{n-1}{n+1}}$$

The vector $v_0 \in L$ is given by

$$v_0 = (1, a, \kappa_2, \dots, \kappa_n)$$

 $\boxed{||v_0||^2 \ge a^2 \ge 2^{318}}$

 \Rightarrow v_0 has not a high chance to be short! we can suppose *a* smaller (exhaustive search):

$$2^{159-\delta} \le a < 2^{160-\delta}$$

GA: Gaussian Assumption

If $||v_0||^2$ is smaller than $\frac{d}{2\pi e}$ Vol $(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*. Here dimension d = n + 1.

$$\operatorname{Vol}(L) = q^{n-1} \ge 2^{159(n-1)} \Rightarrow \operatorname{Vol}(L)^{\frac{2}{n+1}} \ge 2^{318\frac{n-1}{n+1}}$$

The vector $v_0 \in L$ is given by

$$v_0 = (1, a, \kappa_2, \dots, \kappa_n)$$
$$\boxed{||v_0||^2 \ge a^2 \ge 2^{318}}$$

 \Rightarrow v_0 has not a high chance to be short! we can suppose *a* smaller (exhaustive search):

$$2^{159-\delta} \le a < 2^{160-\delta}$$

GA: Gaussian Assumption

If $||v_0||^2$ is smaller than $\frac{d}{2\pi e} \operatorname{Vol}(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*. Here dimension d = n + 1.

$$\operatorname{Vol}(L) = q^{n-1} \ge 2^{159(n-1)} \Rightarrow \operatorname{Vol}(L)^{\frac{2}{n+1}} \ge 2^{318\frac{n-1}{n+1}}$$

The vector $v_0 \in L$ is given by

$$v_0 = (1, \boldsymbol{a}, \kappa_2, \ldots, \kappa_n)$$

We have $2^{159-\delta} \le a < 2^{160-\delta}$ and $2^{159-\delta} \le \kappa_i < 2^{160-\delta}$, thus

$$||v_0||^2 \le n \cdot 2^{2(160-\delta)} = 2^{320-2\delta+\log_2(n)}$$

Shared MSB and LSB: first lattice, first result

Theorem 1

Let be given *n* signatures (r_i, s_i) . Under the following assumptions

- Gaussian Assumption
- $2^{159-\delta} \le a < 2^{160-\delta}$

$$k_i = \underbrace{\mathbf{k_L}}_{0 t} \underbrace{\tilde{k}_i \qquad \mathbf{k_M}}_{t' \qquad 160}$$

• Implicit hint: nonces k_i share δ bits (LSB/MSB)

Then the secret *a* can be computed in time $C(n + 1, \frac{1}{2}\log_2(n - 1) + 160)$ as soon as

$$\delta \geq \frac{320 + (n-1)}{n+1} + \frac{1 + \log_2(\pi e) - \log_2(\frac{n+1}{n})}{2}$$

Notation

We denote by C(d, B) the time complexity of computing a shortest vector of a *d*-dimensional lattice *L* defined by vectors with norm of bit-size bounded by *B*.

The lattice *L* is generated by the row-vectors of the matrix

$$M = \begin{pmatrix} 1 & 0 & \alpha_2 & \dots & \alpha_n \\ 0 & 1 & \beta_2 & \dots & \beta_n \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{pmatrix}$$

and the vector $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M = (1, \mathbf{a}, \kappa_2, \dots, \kappa_n) = v_0$.

Solution Cancel the second coefficient of v_0 Solution Considering a new lattice *L*. Let L' (dimension n) generated by the row-vectors of the matrix

$$M' = \begin{pmatrix} 1 & \alpha_2 & \dots & \alpha_n \\ 0 & \beta_2 & \dots & \beta_n \\ 0 & q & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q \end{pmatrix}$$

and the vector $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M' = (1, \kappa_2, \dots, \kappa_n) = v'_0$.

The secret *a* is no more read in the vector v_0 but in the transformation matrix.

Shared MSB and LSB: improvement

Let L' (dimension n) generated by the row-vectors of the matrix

$$M' = \begin{pmatrix} 1 & \alpha_2 & \dots & \alpha_n \\ 0 & \beta_2 & \dots & \beta_n \\ 0 & q & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q \end{pmatrix}$$

and the vector $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M' = (1, \kappa_2, \dots, \kappa_n) = v'_0$. We have

$$||v_0||^2 \le (n-1) \cdot 2^{2(160-\delta)} = 2^{320-2\delta + \log_2(n-1)}$$

and by considering the sublattice $S \subset L'$ of index q and volume q^{n-1} generated by the first and the last n-1 row of M' we deduce

$$Vol(L') = [L':S]^{-1} Vol(S) = q^{n-2} \ge 2^{159(n-2)} \Rightarrow Vol(L')^{\frac{2}{n}} \ge 2^{318\frac{n-2}{n}}$$

Shared MSB and LSB: improvement

Theorem 2

Let be given *n* signatures (r_i, s_i) . Under the following assumptions

$$k_i = \underbrace{\mathbf{k_L}}_{0 \quad t} \underbrace{\tilde{k}_i \quad \mathbf{k_M}}_{160}$$

• Implicit hint: nonces k_i share δ bits (LSB/MSB)

Then the secret *a* can be computed in time $C(n, \frac{1}{2}\log_2(n-1) + 160)$ as soon as

$$\delta \ge \frac{320 + (n-2)}{n} + \frac{1 + \log_2(\pi e) - \log_2(\frac{n}{n-1})}{2}$$

Notation

We denote by C(d, B) the time complexity of computing a shortest vector of a *d*-dimensional lattice *L* defined by vectors with norm of bit-size bounded by *B*.

Shared MSB and LSB: improvement bis

By using weighted norm we obtain a better result

$$\langle (x_0, \ldots, x_n), (y_0, \ldots, y_n) \rangle := \sum_{i=0}^n x_i y_i 2^{2(160 - \lceil \log_2(v_{0,i}) \rceil)}$$

 \mathbb{R} drastically reduce the required number of shared bits δ in practice

Theorem 3Let be given *n* signatures (r_i, s_i) . Under the following assumptions• Gaussian Assumption
 $2^{159-\delta} \le a < 2^{160-\delta}$ $k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}_{0-t}$ • Implicit hint: nonces k_i share δ bits (LSB/MSB)Then the secret *a* can be computed in time $C(n, \frac{1}{2} \log_2(n-1) + 160\delta)$ as soon as

$$\delta \ge \frac{160 + (n-2)}{n-1} + \frac{n(1 + \log_2(\pi e))}{2(n-1)} \tag{1}$$

Theoretical comparison

Figure : Theoretical bounds of Theorems

General implicit hint:

$$\mathbf{k}_{i} = \underbrace{\begin{bmatrix} \boldsymbol{\delta}_{1} & \boldsymbol{\delta}_{i} \\ \boldsymbol{\delta}_{1} & \boldsymbol{k}_{i,1} \\ \boldsymbol{\delta}_{1} & \boldsymbol{k}_{i,1} \end{bmatrix}}_{0 \quad p_{1} \quad t_{1}} - \underbrace{\begin{bmatrix} \boldsymbol{\delta}_{j} & \boldsymbol{k}_{i,j} \\ \boldsymbol{b}_{j} & \boldsymbol{k}_{i,j} \end{bmatrix}}_{p_{j} \quad t_{j}} - \underbrace{\begin{bmatrix} \boldsymbol{\delta}_{l} & \boldsymbol{k}_{i,l} \\ \boldsymbol{b}_{l} & \boldsymbol{k}_{i,l} \end{bmatrix}}_{p_{l} \quad t_{l} \quad N}$$

More technical but comparable results (see the paper)

Part III

Experimental Results

Computation of a shortest vector

This is an NP-hard problem ! The complexity C(d, B) is

- Exponential in d by using Kannan's algorithm
- Polynomial in *d* and *B* if v₀ can be found with LLL (Polynomial complexity but approximate (exponential 2^d) shortest vector)

 We experimented our attack using LLL: we always obtain the shortest vector, even for large dimension!
 The computational time is not more than one minute (Magma 2.17)

δ	n, Number of messages								
	3	4	5	6	7	8	9	10	11
40	0	0	80	100	100	100	100	100	100
30	0	0	0	3	100	100	100	100	100
20	0	0	0	0	0	0	83	100	100
Time (s)	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	< 0.1	0.1	0.1
δ	n, Number of messages								
	170	180	190	200	250	300	400	500	600
2	73	80	85	100	100	100	100	100	100
1	0	2	8	10	35	56	91	99	99
Time (s)	3.5	3.8	4.1	4.2	6.3	8.5	15	27	44

Table : Success rate of LSB attack

Lines with 100 correspond to theoretical minimal values of δ for a given number of messages (columns).

The second table shows that the attack behaves better in practice! (In theory an attack can not be mount with $\delta < 3$).

Part IV

Conclusion

Results and Concluding Remarks

Summary of the results:

- Lattice attack on (EC)DSA using an implicit hint on the nonces
- ${\tt Im}$ Success rate of 100% for our theoretical results using LLL (\Rightarrow heuristic polynomial time attack)
- Attack behaves better in practice
- The knowledge of the shared bits is not necessary (comparable results in both cases)

Concluding remarks:

- Backdoor in PRNG using such implicit hint are undetectable with Dieharder/STS (see the paper)
- This attack can be applied *mutatis mutandis* on ElGamal or Schnorr signatures
- Is it possible to use implicit hints in other cryptosystems?