
Attacking (EC)DSA Given Only an Implicit Hint
SAC 2012

Jean-Charles Faugère1, Christopher Goyet1,2 Guénaël Renault1
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Recovering the whole secret key in polynomial time

Partial exposure of the secret key:
RSA: N = pq can be factored given some bits of p

Rivest and Shamir (Eurocrypt 1985)
Coppersmith (Eurocrypt 1996)
Boneh et al. (Asiacrypt 1998)
. . .
Herrmann and May (Asiacrypt 2008)

DSA: discrete logarithm of gk given small number of bits of k
Howgrave-Graham and Smart (2001)
Nguyen and Shparlinski (2002)
. . .

+ Take care to power analysis, fault attacks, protocol failures, etc.
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Nowadays ?

Countermeasures development:
unlikely that attacker can determine a set of bits
too strong assumption
but . . .

does an attacker really need to explicitly know some bits ?
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With only an implicit hint: the case of RSA

Implicit factorization
introduced by May and Ritzenhofen (PKC 2009)
not required to explicitly know some bits
an implicit hint may be enough⇒ polynomial factorization

Let Ni = piqi be given RSA moduli.
Implicit Hint was the suspicion that:
number of pi’s share enough bits

+ Many practical scenarii proposed (side-channel, design, . . . )
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with only an implicit Hint : the case of (EC)DSA

What about (EC)DSA ?

+ application of the May-Ritzenhofen trick to DSA scenario

Proposed Problematic:
Let (Mi, Si) be given signed messages from a target with DSA-like
schemes. Assuming some nonces share a portion of their (unknown)
bits:

evaluate the complexity to find the secret key
possible positions for shared bits? (MSB, LSB, Middle, etc)

Possible applications:
fault attacks (unknown bits modification)
destroyed register (like in May-Ritzenhofen 2009)
malicious modification of random generators (e.g. smart card)
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With only an implicit hint: the case of (EC)DSA

Our results:
implicit hint is exploited by lattice method (shortest vector)
required shared bits/signatures comparable to explicit methods
(e.g. ≈ 3 shared bits on 100 signed messages)
efficient down to 1 shared bit/400 signatures
malicious PRNG undetectable (DieHarder & STS testing suite)
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DSA-like schemes

We recall the DSA-style signature scheme:

DLP instance:
let G be a multiplicative group of prime order q (elements of G are
seen as integers)
with 2N−1 ≤ q < 2N , N at least 160
private key is an integer a ∈ {1, . . . , q− 1}
public key is ga ∈ G, where g is a publicly known generator of G

Signature:
to sign a message m, the signer computes h = HASH(m) and
chooses a random number k ∈ {1, . . . , q− 1} called the ephemeral
key or nonce
the signature is the pair (r, s) given by

r = gk mod q and s = k−1(h + ar) mod q
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Our assumptions

To simplify, we choose the size of q equals to N = 160 bits (thus a and
ki are < 2160)

Attackers has messages mi(i = 1, . . . , n) with associated signatures
(ri, si)

Implicit Hint
all ephemeral keys ki used to signed mi shared δ bits between their
MSB/LSB:

ki = kL k̃i kM
0 t t′ 160

160− δ

Notice that ki, k̃i, kL and kM are unknown
but the positions t and t′ are known
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Part II

Lattice Attack
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

S :

{
k1s1 = h1 + ar1 mod q
k2s2 = h2 + ar2 mod q
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Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

S :

{
(kL + 2tk̃1 + 2t′kM)s1 = h1 + ar1 mod q
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

fi(kL, ki, kM, a) = hi + ari − (kL + 2tk̃i + 2t′kM)si

S :

{
f1(kL, k1, kM, a) = 0 mod q
f2(kL, k2, kM, a) = 0 mod q

Elimination of the variables kL and kM:
2−ts−1

1 f1−2−ts−1
2 f2 = 2−t(s−1

1 h1 − s−1
2 h2)+2−ta(s−1

1 r1 − s−1
2 r2)−(k̃1 − k̃2)
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1 h1 − s−1
2 h2)+2−ta(s−1

1 r1 − s−1
2 r2)−(k̃1 − k̃2)

F(x0, x1, x2) = x0α+ x1β − x2 ∈ Fq[x0, x1, x2] verifies F(1, a, κ) = 0

α = 2−t(s−1
1 h1 − s−1

2 h2) mod q

β = 2−t(s−1
1 r1 − s−1

2 r2) mod q

κ = (k̃1 − k̃2)
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

F(x0, x1, x2) = x0α+ x1β − x2 ∈ Fq[x0, x1, x2] verifies F(1, a, κ) = 0

The set of solutions L of F forms a lattice :

v0 = (1, a, κ) ∈ L = {(x0, x1, x2) ∈ Z3 : x0α+ x1β − x2 = 0 mod q}
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Shared MSB and LSB: first lattice (n > 2 signatures)

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (n > 2 signatures):
α2 + aβ2 − κ2 ≡ 0 (mod q)
α3 + aβ3 − κ3 ≡ 0 (mod q)

...
...

...
...

αn + aβn − κn ≡ 0 (mod q)

αi = 2−t(s−1
1 m1 − s−1

i mi) mod q, βi = 2−t(s−1
1 r1 − s−1

i ri) mod q, κi = k̃1 − k̃i

v0 = (1, a, κ2, . . . , κn) ∈ L
L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}

Is v0 a shortest vector in L?
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Shared MSB and LSB: first lattice (n > 2 signatures)

v0 = (1, a, κ2, . . . , κn) ∈ L
L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}

Is v0 a shortest vector in L?

The lattice L is generated by the row-vectors of the matrix

M =


1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


and (1, a, λ2, . . . , λn) ·M = v0 for some λi.
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Shared MSB and LSB: first lattice (n > 2 signatures)

v0 = (1, a, κ2, . . . , κn) ∈ L
L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}

Is v0 a shortest vector in L?

GA: Gaussian Assumption
Let L be a lattice of dimension d and v0 ∈ L. If ||v0||2 is smaller than

d
2πe Vol(L)

2
d then v0 is a shortest vector of L.

+ Assumption generally verified in practice (in particular during our
experiments).
+ Find conditions on n and δ to be under the GA.
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Shared MSB and LSB: first lattice (n > 2 signatures)

v0 = (1, a, κ2, . . . , κn) ∈ L
L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}

Is v0 a shortest vector in L?

GA: Gaussian Assumption

If ||v0||2 is smaller than d
2πe Vol(L)

2
d then v0 is a shortest vector of L.

Here dimension d = n + 1.

The lattice L is generated by the row-vectors of the matrix

M =


1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


Vol(L) = qn−1 ≥ 2159(n−1) ⇒ Vol(L)

2
n+1 ≥ 2318 n−1

n+1
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Shared MSB and LSB: first lattice (n > 2 signatures)

GA: Gaussian Assumption

If ||v0||2 is smaller than d
2πe Vol(L)

2
d then v0 is a shortest vector of L.

Here dimension d = n + 1.

Vol(L) = qn−1 ≥ 2159(n−1) ⇒ Vol(L)
2

n+1 ≥ 2318 n−1
n+1

The vector v0 ∈ L is given by

v0 = (1, a, κ2, . . . , κn)

||v0||2 ≥ a2 ≥ 2318

⇒ v0 has not a high chance to be short!
+ We can suppose a smaller (exhaustive search):

2159−δ ≤ a < 2160−δ
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Shared MSB and LSB: first lattice (n > 2 signatures)

GA: Gaussian Assumption

If ||v0||2 is smaller than d
2πe Vol(L)

2
d then v0 is a shortest vector of L.

Here dimension d = n + 1.

Vol(L) = qn−1 ≥ 2159(n−1) ⇒ Vol(L)
2

n+1 ≥ 2318 n−1
n+1

The vector v0 ∈ L is given by

v0 = (1, a, κ2, . . . , κn)

We have 2159−δ ≤ a < 2160−δ and 2159−δ ≤ κi < 2160−δ, thus

||v0||2 ≤ n · 22(160−δ) = 2320−2δ+log2(n)
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Shared MSB and LSB: first lattice, first result

Theorem 1
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption

2159−δ ≤ a < 2160−δ
ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the secret a can be computed in time C(n + 1, 1

2 log2(n− 1) + 160)
as soon as

δ ≥ 320 + (n− 1)
n + 1

+
1 + log2(πe)− log2(

n+1
n )

2

Notation
We denote by C(d,B) the time complexity of computing a shortest
vector of a d-dimensional lattice L defined by vectors with norm of
bit-size bounded by B.
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Shared MSB and LSB: improvement

The lattice L is generated by the row-vectors of the matrix

M =


1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


and the vector (1, a, λ2, . . . , λn) ·M = (1, a, κ2, . . . , κn) = v0.

+ Cancel the second coefficient of v0
+ Considering a new lattice L.
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Shared MSB and LSB: improvement

Let L′ (dimension n) generated by the row-vectors of the matrix

M′ =


1 α2 . . . αn

0 β2 . . . βn

0 q . . . 0
...

...
. . .

...
0 0 . . . q


and the vector (1, a, λ2, . . . , λn) ·M′ = (1, κ2, . . . , κn) = v′0.

+ The secret a is no more read in the vector v0 but in the
transformation matrix.
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Shared MSB and LSB: improvement

Let L′ (dimension n) generated by the row-vectors of the matrix

M′ =


1 α2 . . . αn

0 β2 . . . βn

0 q . . . 0
...

...
. . .

...
0 0 . . . q


and the vector (1, a, λ2, . . . , λn) ·M′ = (1, κ2, . . . , κn) = v′0.

We have

||v0||2 ≤ (n− 1) · 22(160−δ) = 2320−2δ+log2(n−1)

and by considering the sublattice S ⊂ L′ of index q and volume qn−1

generated by the first and the last n− 1 row of M′ we deduce

Vol(L′) = [L′ : S]−1 Vol(S) = qn−2 ≥ 2159(n−2) ⇒ Vol(L′)
2
n ≥ 2318 n−2

n
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Shared MSB and LSB: improvement

Theorem 2
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption
2159−δ ≤ a < 2160−δ ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the secret a can be computed in time C(n, 1

2 log2(n− 1) + 160) as
soon as

δ ≥ 320 + (n− 2)
n

+
1 + log2(πe)− log2(

n
n−1)

2

Notation
We denote by C(d,B) the time complexity of computing a shortest
vector of a d-dimensional lattice L defined by vectors with norm of
bit-size bounded by B.

18/26



Shared MSB and LSB: improvement bis

By using weighted norm we obtain a better result

〈(x0, . . . , xn), (y0, . . . , yn)〉 :=
n∑

i=0

xiyi22(160−dlog2(v0,i)e)

+ drastically reduce the required number of shared bits δ in practice

Theorem 3
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption
2159−δ ≤ a < 2160−δ ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the secret a can be computed in time C(n, 1

2 log2(n− 1) + 160δ) as
soon as

δ ≥ 160 + (n− 2)
n− 1

+
n(1 + log2(πe))

2(n− 1)
(1)
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Theoretical comparison
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Generalization: shared blocks

General implicit hint:

ki= ki,0

δ1

b1 ki,1

δj

bj ki,j

δl

bl ki,l

0 p1 t1 pj tj pl tl N

+ More technical but comparable results (see the paper)
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Part III

Experimental Results
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Performing the computations

Computation of a shortest vector
This is an NP-hard problem ! The complexity C(d,B) is

Exponential in d by using Kannan’s algorithm
Polynomial in d and B if v0 can be found with LLL (Polynomial
complexity but approximate (exponential 2d) shortest vector)

+ We experimented our attack using LLL: we always obtain the
shortest vector, even for large dimension!
+ The computational time is not more than one minute (Magma 2.17)
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Success rates

δ
n, Number of messages

3 4 5 6 7 8 9 10 11
40 0 0 80 100 100 100 100 100 100
30 0 0 0 3 100 100 100 100 100
20 0 0 0 0 0 0 83 100 100

Time (s) < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 0.1 0.1

δ
n, Number of messages

170 180 190 200 250 300 400 500 600
2 73 80 85 100 100 100 100 100 100
1 0 2 8 10 35 56 91 99 99

Time (s) 3.5 3.8 4.1 4.2 6.3 8.5 15 27 44

Table : Success rate of LSB attack

Lines with 100 correspond to theoretical minimal values of δ for a given
number of messages (columns).

+ The second table shows that the attack behaves better in practice!
(In theory an attack can not be mount with δ < 3).
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Part IV

Conclusion
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Results and Concluding Remarks

Summary of the results:
+ Lattice attack on (EC)DSA using an implicit hint on the nonces
+ Success rate of 100% for our theoretical results using LLL (⇒

heuristic polynomial time attack)
+ Attack behaves better in practice
+ The knowledge of the shared bits is not necessary (comparable

results in both cases)

Concluding remarks:
+ Backdoor in PRNG using such implicit hint are undetecteble with

Dieharder/STS (see the paper)
+ This attack can be applied mutatis mutandis on ElGamal or

Schnorr signatures
+ Is it possible to use implicit hints in other cryptosystems?
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