Algebraic Side Channel Cryptanalysis

Christopher Goyet

Academic Advisors : Jean-Charles Faugère and Guénaël Renault Industrial Advisor : Olivier Orcière

> PolSys - LIP6 LCH - Thales Communications and Security

> > November 7, 2012

Cryptography is the discipline related to data protection and communications

General cryptanalysis methods

- Linear cryptanalysis
- Differential cryptanalysis
- Algebraic cryptanalysis

• ...

Algebraic cryptanalysis

• Security \Rightarrow hardness of solving these polynomial systems

Algebraic cryptanalysis with additional information

Algebraic cryptanalysis with additional information

Side Channel Analysis

Cryptographic algorithms implementation (smartcard, FPGA, Microcontroller, ...) ~ physical leakage of information

"A correct implementation of a strong protocol is not necessarily secure" (Kocher, 1999)

Symmetric-key cryptography: AES, PRESENT

Small Characteristic Field (F2)

Symmetric-key cryptography:

- leakage models
- HW, HD, . . .
- criterion of success
- complexity upper-bounded
- resistant cryptosystems
- Faugère, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks, COSADE 2011
- Carlet, Faugère, Goyet, Renault, An Analysis of Algebraic Side Channel Attacks, February 2012, Journal of Cryptographic Engineering

Public-key cryptography:

- New situation to attack (EC)DSA
- Implicit information
- unknown shared bits (locked register)
- Faugère, Goyet, Renault, Attacking (EC)DSA Given Only an Implicit Hint, SAC 2012

Algebraic Side Channel Attack on block ciphers

Algebraic Side Channel Attacks (ASCA)

Attacks against block ciphers proposed by Renauld, Standaert and Veyrat-Charvillon (CHES 2009, Inscrypt2009)

Interesting aspect			
Nb observations:	1 for ASCA	/	> 1000 DPA

Solving step: 1s with HW / ∞ without

Main goal: analysis of algebraic phase

Our goal : analysis of algebraic phase

- Explain the efficiency (solving complexity)
- Resistant Cryptosystems

Complexity

- Degree of equations during computation
- Intrinsic to input problem

System modeling a block cipher

- S-boxes are the only nonlinear part of many block ciphers
- They give the resistance against algebraic attacks

\Rightarrow S-boxes + HW leakages ?

Let S an n-bit S-box. If $w_{in} = 0$ then $x_1 = x_2 = \dots = x_n = 0$ and the y_i are given by $w_{in} = 0$ S y_1 \vdots y_n S y_1 \vdots y_n

$$y_1,\ldots,y_n=S(0,\ldots,0)$$

Influence of leakages:

- S-box completely described by 2*n* linear relations
- Degree reduced \Rightarrow Algebraic resistance canceled

HW model : (w_{in}, w_{out})

PRESENT S-box example, n = 8

Figure : Nb of linear relations

- Most of leakages give a lot of linear relations: $\mathbb{E}(\#AI_L) \simeq 8$
- Algebraic Immunity with Leakage: #AI_L(w_{in}, w_{out})

 \Rightarrow system partly linearized \Rightarrow solving complexity?

HW model : (w_{in}, w_{out})

PRESENT S-box example, n = 8

Figure : Nb of linear relations

- Most of leakages give a lot of linear relations: $\mathbb{E}(\#AI_L) \simeq 8$
- Algebraic Immunity with Leakage: #AI_L(w_{in}, w_{out})

 \Rightarrow system partly linearized \Rightarrow solving complexity?

Definition

 \forall S-box *S*, \forall leakage value $\ell = (w_{in}, w_{out})$ we define

$$N_S(w_{in}, w_{out}) = \#\{x \in \mathbb{F}_2^n \text{ s.t. } HW(x) = w_{in}, HW(S(x)) = w_{out}\}$$

Prop

Let *n* the bus size of *S*. If $N_S(w_{in}, w_{out})$ is non-zero then

 $#AI_L(S, w_{in}, w_{out}) \ge 2n + 1 - N_S(w_{in}, w_{out})$

 $N_S(w_{in}, w_{out})$ small \rightsquigarrow a lot of linear relations between input and output

Definition

 \forall S-box *S*, \forall leakage value $\ell = (w_{in}, w_{out})$ we define

$$N_S(w_{in}, w_{out}) = \#\{x \in \mathbb{F}_2^n \text{ s.t. } HW(x) = w_{in}, HW(S(x)) = w_{out}\}$$

Prop

Let *n* the bus size of *S*. If $N_S(w_{in}, w_{out})$ is non-zero then

 $#AI_L(S, w_{in}, w_{out}) \ge 2n + 1 - N_S(w_{in}, w_{out})$

 $N_S(w_{in}, w_{out})$ small \rightsquigarrow a lot of linear relations between input and output

If plaintext (or ciphertext) known

⇒ leakages ⇒ constraints ⇒ exhaustive search reduced to $\prod_i N_{S_i}$ Ex. with PRESENT : $\mathbb{E}(\prod_i N_{S_i}) = 2^{29}$ (instead of 2⁶⁴)

Unknown P/C or few consecutive leakages

- *N_S*(*w_{in}*, *w_{out}) small* ⇒ exhaustive search reduced but must be done on 2 consecutive rounds
- $N_S(w_{in}, w_{out})$ very small $(\leq 6) \Rightarrow$ fixed input/output bits!

→ subkey bits deduced without knowing plaintext/ciphertext

Implementation:

- algebraic cryptanalysis library (systems generator)
- ASCA in MAGMA

Experiments performed against PRESENT and AES

Implementation:

- algebraic cryptanalysis library (systems generator)
- ASCA in MAGMA

Experiments performed against PRESENT and AES

Analysis supported by experiments:										
		GB (F4)	SAT-solvers							
٩	reject of leakages with large N_S	\checkmark	√ (<3h)							
٩	reject of leakages with small N_S	×	≍ (>3h)							
۲	no consecutive rounds with leakages	×	≍ (>3h)							

Analysis seems valid with both Gröbner basis and SAT-solver

ASCA Resistant S-Boxes ?

Are there ASCA resistant S-Boxes ?

Requirements:

- few fixed input/output bits
- few linear relations
- $\rightsquigarrow N_S$ large for a lot of leakages

A first class: N_S max for all leakages

$$N_{S}(w_{in}, w_{out}) = \#(HW^{-1}(w_{in}) \bigcap S^{-1}(HW^{-1}(w_{out})))$$

Then, S must satisfy

$$HW^{-1}(w_{in}) = S^{-1}(HW^{-1}(w_{out}))$$

and

$$w_{in} = w_{out}$$
 or $w_{in} = n - w_{out}$

Characterization:

$$S(x) = \pi(x) \oplus f(HW(x))(1, ..., 1)$$

• $\pi(x)$ = permutation stable under *HW* (i.e. $HW(x) = HW(\pi(x))$)

• f = boolean function s.t. $\forall x \in \{0, \dots, n\}, f(x) = f(n - x)$

Example of such 4-bit S-box:

x	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Е	F
S(x)	0	В	D	С	Е	6	9	8	7	5	3	1	А	2	4	F

$$w_{in} = w_{out}$$
 or $w_{in} = n - w_{out}$

Experiments performed against PRESENT and AES

Analysis supported by experiments:									
0 0 0	reject of leakages with large N_S reject of leakages with small N_S no consecutive leaked rounds with resistant S-boxes	GB × × × ×	SAT-solver						

Proposition:

Let *S* an *n*-bit optimally ASCA-resistant S-Box. Then we have

$$n \text{ even } \Rightarrow \text{nonlinearity}(S) = 0$$

Proof:

$$w_{in} = w_{out}$$
 or $w_{in} = n - w_{out}$

then $w_{in} + w_{out} \equiv 0 \pmod{2}$ because *n* is even, and $\forall x \in \mathbb{F}_2^n$, $\langle x | (1, ..., 1) \rangle + \langle S(x) | (1, ..., 1) \rangle \equiv 0 \pmod{2}$

$$\operatorname{Lin}(S) = \max_{a \in \mathbb{F}_2^n, b \in \mathbb{F}_2^n \setminus \{0\}} \left| \sum_{x \in \mathbb{F}_2^n} (-1)^{\langle x | a \rangle + \langle S(x) | b \rangle} \right| = 2^n$$

Open problem:

(optimally) ASCA-resistant + strong against linear cryptanalysis ?

- Other leakage models
- Leakages with noise/errors

Some other leakage models

Example 1 : Hamming Distance Leakage Model

HD model :

•
$$\mathbb{E}(\#AI_L) = 2, 3, \mathbb{E}(N_S) \simeq 2^{5,9}$$

Upper bound (first round):

- PRESENT: $E(N_S)^8 \simeq 2^{47}$ $\Rightarrow \checkmark \simeq 70\% (< 3h)$
- AES: $E(N_S)^{16} \simeq 2^{90} \times$

d	0	1	2	3	4	5	6	7	8
$N_S(d)$	0	0	16	56	81	64	30	8	1
$#AI_L(S, d)$	0	0	10	3	1	1	1	9	16
fixed bits	0	0	0	0	0	0	0	0	16

Figure : HD model and PRESENT S-Box

Perspectives:

better leakages exploitation / using more HD

Example 2 : uncertain Hamming Weight

Observations :

- $\mathbb{E}(lin. eq.) = 2, 6$
- $\mathbb{E}(N_S) \simeq 2^5$
- Upper bound (first round) PRESENT: $\mathbb{E}(N_S)^8 \simeq 2^{41} \checkmark$ (SAT solver)

- on AES
- Iarger error rate

Example 3 : Side Channel Collision Attacks

Side Channel Collision Attacks seen as ASCA **Assumptions** : equalities between intermediate bits

Experiments with SAT-solver :

- with extremal rounds
- e without extremal rounds ×

- Criterion of success (complexity)?
- Exploit new collisions (e.g. middle rounds) ?

Example 4 : fault attack with algebraic methods

Experiment on AES:

0	Piret and	Quisquater	DFA	(round	7) 🗸	1
---	-----------	------------	-----	--------	------	---

- faults on other rounds
- Other fault models (Chong Hee Kim, 2011) /
- Other cryptosystems: DES (Courtois2010), ...
- Oriterion of success (complexity) ?

On public-key cryptography : Attacking (EC)DSA with only an implicit hint

Algebraic cryptanalysis with additional information

Possible scenarios:

- power analysis (known bits) \Rightarrow Howgrave-Graham and Smart (2001), ...
- fault attacks \Rightarrow Bao (1996), Giraud and Knudsen (2004), ...
- locked register (RSA) ⇒ Implicit Factoring, May Ritzenhofen (2009)
- with DSA-like schemes ?

With only an implicit hint: the case of (EC)DSA

Framework:

Let (M_i, S_i) be given signed messages with DSA-like schemes. Assumption: nonces share a portion of their (unknown) bits

Our results:

- secret key found in polynomial time
- positions for shared bits: MSB, LSB, Middle, etc
- implicit hint is exploited by lattice method (shortest vector)
- required shared bits/signatures comparable to explicit methods (e.g. \approx 3 shared bits on 100 signed messages)
- efficient with 1 shared bit/400 signatures

We recall the DSA-style signature scheme:

- DLP instance:
 - *G* group of prime order q ($2^{N-1} \le q < 2^N$)
 - private key is an integer $a \in \{1, \ldots, q-1\}$
 - public key is $g^{\mathbf{a}} \in G$, where g is a generator of G
- Signature:
 - to sign a message *m*, the signer computes h = HASH(m) and
 - chooses a random number $\mathbf{k} \in \{1, \dots, q-1\}$ called the ephemeral key or nonce
 - the signature is the pair (r, s) given by

$$r = g^k \mod q$$
 and $s = k^{-1}(h + ar) \mod q$

To simplify, we choose the size of q equals to N = 160 bits (thus a and k_i are $< 2^{160}$)

Attackers has messages m_i with associated signatures (r_i, s_i) i = 1, ..., n

Implicit Hint

all ephemeral keys k_i used to signed m_i shared δ bits between their MSB/LSB:

$$k_i = \overbrace{\mathbf{k_L}}^{t_{160-\delta}} \overbrace{\tilde{k}_i \qquad \mathbf{k_M}}^{t_{160-\delta}}$$

Notice that k_i , \tilde{k}_i , $\mathbf{k_L}$ and $\mathbf{k_M}$ are unknown

Implicit hypothesis:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{t_{60-\delta}}$$

Polynomial system modeling (two signatures):

$$S: \begin{cases} k_1 s_1 = h_1 + ar_1 \mod q \\ k_2 s_2 = h_2 + ar_2 \mod q \\ k_1 = k_L + 2^t \tilde{k_1} + 2^{t'} k_M \\ k_2 = k_L + 2^t \tilde{k_2} + 2^{t'} k_M \end{cases}$$

Implicit hypothesis:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{t_{60-\delta}}$$

Polynomial system modeling (two signatures):

$$\mathcal{S}: \begin{cases} (k_L + 2^t \tilde{k_1} + 2^{t'} k_M) s_1 &= h_1 + ar_1 \mod q \\ (k_L + 2^t \tilde{k_2} + 2^{t'} k_M) s_2 &= h_2 + ar_2 \mod q \end{cases}$$

Implicit hypothesis:

Polynomial system modeling (two signatures):

$$S: \begin{cases} (k_L + 2^t \tilde{k_1} + 2^{t'} k_M) s_1 &= h_1 + ar_1 \mod q \\ (k_L + 2^t \tilde{k_2} + 2^{t'} k_M) s_2 &= h_2 + ar_2 \mod q \end{cases}$$

Elimination of the variables k_L and k_M :

 $2^{-t}(s_1^{-1}h_1 - s_2^{-1}h_2) + 2^{-t}a(s_1^{-1}r_1 - s_2^{-1}r_2) - (\tilde{k_1} - \tilde{k_2}) = 0 \mod q$

Implicit hypothesis:

$$k_i = \underbrace{\begin{matrix} \stackrel{i_{60-\delta}}{\overleftarrow{k_L}} & \stackrel{i_{60-\delta}}{\overleftarrow{k_i}} \\ 0 & t & t' \end{matrix} \begin{matrix} i_{60} \\ 160 \end{matrix}$$

Polynomial system modeling (two signatures):

$$2^{-t}(s_1^{-1}h_1 - s_2^{-1}h_2) + 2^{-t}a(s_1^{-1}r_1 - s_2^{-1}r_2) - (\tilde{k_1} - \tilde{k_2}) = 0 \mod q$$

 $F(x_0, x_1, x_2) = x_0 \alpha + x_1 \beta - x_2 \in \mathbb{F}_q[x_0, x_1, x_2]$ verifies $F(1, a, \kappa_{1,2}) = 0$

- $\alpha = 2^{-t}(s_1^{-1}h_1 s_2^{-1}h_2) \mod q$
- $\beta = 2^{-t}(s_1^{-1}r_1 s_2^{-1}r_2) \mod q$
- $\kappa_{1,2} = (\tilde{k_1} \tilde{k_2})$

Implicit hypothesis:

$$k_i = \underbrace{\begin{matrix} \overset{160-\delta}{\mathbf{k_L}} & \overset{1}{\mathbf{k_i}} & \mathbf{k_M} \end{matrix}}_{0 t}$$

Polynomial system modeling (two signatures):

$$F(x_0, x_1, x_2) = x_0 \alpha + x_1 \beta - x_2 \in \mathbb{F}_q[x_0, x_1, x_2]$$
 verifies $F(1, a, \kappa_{1,2}) = 0$

The set of solutions *L* of *F* forms a lattice :

$$L = \{ (x_0, x_1, x_2) \in \mathbb{Z}^3 : x_0 \alpha + x_1 \beta - x_2 = 0 \mod q \}$$

with $v_0 = (1, a, \kappa_{1,2}) \in L$

Shared MSB and LSB: first lattice (n > 2 signatures)

Implicit hypothesis:

$$k_i = \overbrace{\mathbf{k_L} \quad \tilde{k}_i \quad \mathbf{k_M}}^{t_{60-\delta}}$$

Polynomial system modeling (n > 2 signatures):

$$\begin{cases} \alpha_2 + a\beta_2 - \kappa_{1,2} \equiv 0 \pmod{q} \\ \alpha_3 + a\beta_3 - \kappa_{1,3} \equiv 0 \pmod{q} \\ \vdots & \vdots & \vdots \\ \alpha_n + a\beta_n - \kappa_{1,n} \equiv 0 \pmod{q} \end{cases}$$
$$\alpha_i = 2^{-t} (s_1^{-1}m_1 - s_i^{-1}m_i) \mod q, \ \beta_i = 2^{-t} (s_1^{-1}r_1 - s_i^{-1}r_i) \mod q, \ \kappa_{i,j} = \tilde{\mathbf{k}}_i - \tilde{\mathbf{k}}_j$$

$$L = \{(x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n)\}$$

with $v_0 = (1, a, \kappa_2, \dots, \kappa_n) \in L$

Shared MSB and LSB: first lattice (n > 2 signatures)

$$L = \{(x_0, \dots, x_n) \in \mathbb{Z}^{n+1} : x_0 \alpha_i + x_1 \beta_i - x_i = 0 \mod q \ (i = 2, \dots, n)\}$$

with $v_0 = (1, a, \kappa_2, \dots, \kappa_n) \in L$

The lattice *L* is generated by the row-vectors of the matrix

$$M = \begin{pmatrix} 1 & 0 & \alpha_2 & \dots & \alpha_n \\ 0 & 1 & \beta_2 & \dots & \beta_n \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{pmatrix}$$

and $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M = v_0$ for some λ_i .

Shared MSB and LSB: first lattice, first result

Gaussian Assumption

If $||v_0||^2$ is smaller than $\frac{d}{2\pi e} \operatorname{Vol}(L)^{\frac{2}{d}}$ then v_0 is a shortest vector of *L*. Here the dimension is d = n + 1.

Theorem 1

Let be given *n* signatures (r_i, s_i) . Under the following assumptions

Gaussian Assumption

•
$$2^{159-\delta} \le a < 2^{160-\delta}$$

$$k_i = \underbrace{\begin{matrix} \mathbf{k_L} \\ 0 \end{matrix}_{t} & \begin{matrix} \widetilde{k_i} \\ \mathbf{k_i} \end{matrix}_{t'} \\ \mathbf{k_i} \end{matrix}_{t'}$$

• Implicit hint: nonces k_i share δ bits (LSB/MSB)

Then the vector v_0 is a shortest vector in *L* as soon as

$$\delta \geq \frac{320 + (n-1)}{n+1} + \frac{1 + \log_2(\pi e) - \log_2(\frac{n+1}{n})}{2}$$

ex: 32 bits shared \Rightarrow 10 signatures needed

The lattice L is generated by the row-vectors of the matrix

$$M = \begin{pmatrix} 1 & 0 & \alpha_2 & \dots & \alpha_n \\ 0 & 1 & \beta_2 & \dots & \beta_n \\ 0 & 0 & q & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & q \end{pmatrix}$$

and the vector $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M = (1, \mathbf{a}, \kappa_2, \dots, \kappa_n) = v_0$.

- \Rightarrow Cancel the second coefficient of v_0
- \Rightarrow Considering a new lattice *L*.

Let L' (dimension n) generated by the row-vectors of the matrix

$$M' = \begin{pmatrix} 1 & \alpha_2 & \dots & \alpha_n \\ 0 & \beta_2 & \dots & \beta_n \\ 0 & q & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & q \end{pmatrix}$$

and the vector $(1, \mathbf{a}, \lambda_2, \dots, \lambda_n) \cdot M' = (1, \kappa_2, \dots, \kappa_n) = v'_0$.

⇒ The secret *a* is no more contained in v'_0 ⇒ The matrix M do not form a basis of the lattice

Theorem 2

Let be given *n* signatures (r_i, s_i) . Under the following assumptions

• Gaussian Assumption • $2^{159-\delta} \le a \le 2^{160-\delta}$

$$k_i = \underbrace{\mathbf{k_L}}_{0 t} \underbrace{\tilde{k}_i \quad \mathbf{k_M}}_{t' \quad 160}$$

• Implicit hint: nonces k_i share δ bits (LSB/MSB)

Then the vector v'_0 is a shortest vector in L' as soon as

$$\delta \geq \frac{320 + (n-2)}{n} + \frac{1 + \log_2(\pi e) - \log_2(\frac{n}{n-1})}{2}$$

ex: 32 bits shared \Rightarrow 11 signatures needed

Shared MSB and LSB: improvement bis

 $\Rightarrow v'_0 = (1, \kappa_2, \dots, \kappa_n)$, using weighted norm

$$\langle (x_0, \ldots, x_n), (y_0, \ldots, y_n) \rangle := \sum_{i=0}^n x_i y_i 2^{2(160 - \lceil \log_2(v_{0,i}) \rceil)}$$

Theorem 3

Let be given *n* signatures (r_i, s_i) . Under the following assumptions

- Gaussian Assumption • $2^{159-\delta} \leq a \leq 2^{160-\delta}$ • $k_i = \begin{bmatrix} k_L & \tilde{k}_i & k_M \\ 0 & t & t' & 160 \end{bmatrix}$
- Implicit hint: nonces k_i share δ bits (LSB/MSB)

Then the vector v'_0 is a shortest vector in L' as soon as

$$\delta \ge \frac{160 + (n-2)}{n-1} + \frac{n(1 + \log_2(\pi e))}{2(n-1)} \tag{1}$$

Theoretical comparison

ex: 32 bits shared \Rightarrow 7 signatures needed

Computation of a shortest vector

This is an NP-hard problem ! The complexity is

- Exponential in *d* by using Kannan's algorithm
- Polynomial in *d* if v₀ can be found with LLL (Polynomial complexity but approximate (exponential 2^d) shortest vector)
- \Rightarrow Experimented using LLL: we always obtain the private key
- \Rightarrow The computational time is not more than one minute (Magma 2.17)
- \Rightarrow In practice, the attack can be mounted with $\delta < 3$

General implicit hint:

$$\mathbf{k}_{i} = \underbrace{\begin{bmatrix} \delta_{1} & \\ \delta_{1} & \\ \mathbf{k}_{i,0} & \\ 0 & p_{1} & t_{1} \end{bmatrix}}_{0 \quad p_{1} \quad t_{1}} - \underbrace{\begin{bmatrix} \delta_{j} & \\ \mathbf{b}_{j} & \\ \mathbf{k}_{i,j} \\ p_{j} & t_{j} \end{bmatrix}}_{p_{j} \quad t_{j}} - \underbrace{\begin{bmatrix} \delta_{l} & \\ \mathbf{b}_{l} & \\ \mathbf{k}_{i,l} \\ p_{l} & t_{l} \end{bmatrix}}_{p_{l} \quad t_{l} \quad N}$$

 \Rightarrow More technical but comparable results ex with 3 blocks: 7 signatures \rightarrow 37 shared bits need

Remarks:

- ECDSA implicit attack can be applied *mutatis mutandis* on ElGamal or Schnorr signatures
- Backdoor in PRNG using such implicit hint are undetectable with Dieharder/STS

- Implicit hints in other cryptosystems?
- Other kind of implicit hints ? (linear, polynomial relations, ...)
- New statistical tests ?

- Additional information (even implicit) exploited with algebraic method on both symmetric and asymmetric cryptographic systems
- equivalent leakage models ?
- ex: implicit hint (DSA) ⇐⇒ collisions (ASCA)
- Faugère, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks, COSADE 2011

Carlet, Faugère, Goyet, Renault, An Analysis of Algebraic Side Channel Attacks, February 2012, Journal of Cryptographic Engineering

Faugère, Goyet, Renault, Attacking (EC)DSA Given Only an Implicit Hint, SAC 2012