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Industrial Advisor : Olivier Orcière

PolSys - LIP6
LCH - Thales Communications and Security

November 7, 2012



Cryptology

Cryptography is the discipline related to data protection and
communications

General cryptanalysis methods
Linear cryptanalysis
Differential cryptanalysis
Algebraic cryptanalysis
...
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Algebraic cryptanalysis

Cryptographic
Algorithm

(AES, DSA, ...) Modeling



x1x2 + x1k2 + x1 + x2k1 + x3 + x4s4+
s1s4 + s3s4 + s3 + s4k4 + s4 + k1k2 + k1 + k3,

x4 + s1s3 + s2 + s4 + k4 + 1,
.
.
.
s21 + s52y124 + s3y124 + y121y124 + y121+

y123y124 + y124k122 + y124k123 + y124 + k121

Solving


k1 = 1,
k2 = 0,
k3 = 1,
.
.
.

Secret
(key, message, ...)

Algebraic cryptanalysis
Security⇒ hardness of solving these polynomial systems
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Algebraic cryptanalysis with additional information

Cryptographic
Algorithm

(AES, DSA, ...) Modeling



x1x2 + x1k2 + x1 + x2k1 + x3 + x4s4+
s1s4 + s3s4 + s3 + s4k4 + s4 + k1k2 + k1 + k3,

x4 + s1s3 + s2 + s4 + k4 + 1,
.
.
.
s21 + s52y124 + s3y124 + y121y124 + y121 + . . .
s1s2 + s1s3 + s1s4 + . . .
s124s125 + s124s126 + . . .

Solving
in practice ?

additional
information

on secret data
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Side Channel Analysis

Cryptographic algorithms implementation (smartcard, FPGA, Microcontroller,
...)  physical leakage of information

Smartcard

Faults

Timing EM radiations

Power consumption

“A correct implementation of a strong protocol is not necessarily secure”
(Kocher, 1999)
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Solving methods

Symmetric-key cryptography:
AES, PRESENT

Small Characteristic Field
(F2)

SAT solver & Gröbner Basis

Public-key cryptography:
(EC)DSA

Large Characteristic or
Integer

Lattice reduction (LLL)
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Contributions

Symmetric-key cryptography:
leakage models
HW, HD, . . .
criterion of success
complexity upper-bounded
resistant cryptosystems

Faugère, Goyet, Renault, A new
Criterion for Effective Algebraic Side
Channel Attacks, COSADE 2011

Carlet, Faugère, Goyet, Renault,
An Analysis of Algebraic Side Channel
Attacks, February 2012,
Journal of Cryptographic Engineering

Public-key cryptography:
New situation to attack
(EC)DSA
Implicit information
unknown shared bits
(locked register)

Faugère, Goyet, Renault,
Attacking (EC)DSA Given Only an
Implicit Hint, SAC 2012
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Algebraic Side Channel Attack on
block ciphers
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Algebraic Side Channel Attacks (ASCA)
Attacks against block ciphers proposed by Renauld, Standaert and
Veyrat-Charvillon (CHES 2009, Inscrypt2009)


x4 + s1s3 + s2 + s4 + k4 + 1,

.

.

.
s3y124 + y121y124 + y121 + . . .
y124k122 + y124k123 + y124 + k121 + . . .


x4 + s1s3 + s2 + s4 + k4 + 1,
y124k122 + y124k123 + y124 + k121 + . . .

.

.

.
s121s122 + s121s123 + s121s124 + . . .

Key
SAT solver

Interesting aspects:
Nb observations: 1 for ASCA / > 1000 DPA
Solving step: 1s with HW / ∞ without
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Main goal: analysis of algebraic phase


x4 + s1s3 + s2 + s4 + k4 + 1,

.

.

.
s3y124 + y121y124 + y121 + . . .
y124k122 + y124k123 + y124 + k121 + . . .


x4 + s1s3 + s2 + s4 + k4 + 1,
y124k122 + y124k123 + y124 + k121 + . . .

.

.

.
s121s122 + s121s123 + s121s124 + . . .

Key
SAT solver

Gröbner Basis

Our goal : analysis of algebraic phase
Explain the efficiency (solving complexity)
Resistant Cryptosystems
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Gröbner Basis Algorithm


x4 + s1s3 + s2 + s4 + k4 + 1,

.

.

.
s3y124 + y121y124 + y121 + . . .
y124k122 + y124k123 + y124 + k121 + . . .

Gröbner Basis

Algorithm



g1(k128, k127, . . . , x2, x1)

.

.

.
gs−i(x2, x1)

.

.

.
gs−1(x2, x1)

gs(x1)

Complexity
Degree of equations during computation
Intrinsic to input problem
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System modeling a block cipher

S-boxes are the only nonlinear part of many block ciphers
They give the resistance against algebraic attacks



x4 + s1s3 + s2 + s4 + k4 + 1,
s1s2 + s1s3 + s1s4 + . . .
s121s122 + s121s123 + s121s124 + . . .

.

.

.
s3y124 + y121y124 + y121 + . . .
y124k122 + y124k123 + y124 + k121 + . . .

⇒ S-boxes + HW leakages ?
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Trivial example: win = 0

Let S an n-bit S-box.
If win = 0 then
x1 = x2 = · · · = xn = 0
and the yi are given by

x1...
xn

⇒ S ⇒
y1...
yn

win = 0

y1, . . . , yn = S(0, . . . , 0)

Influence of leakages:
S-box completely described by 2n linear relations
Degree reduced⇒ Algebraic resistance canceled
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HW model : (win,wout)

x1...
xn

⇒ S ⇒
y1...
yn

win wout

PRESENT S-box example, n = 8
PPPPPwin

wout 0 1 2 3 4 5 6 7 8

0 16
1 9
2 15 15 8 13 15
3 9 5 9 5 9
4 16 15 14 2 11 3 12 13 16
5 13 13 2 7 10 11 13
6 15 12 15 7 15 14
7 13 13
8 16

Figure : Nb of linear relations

Most of leakages give a
lot of linear relations:
E(#AIL) ' 8

Algebraic Immunity with
Leakage: #AIL(win,wout)

⇒ system partly linearized⇒ solving complexity?
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Another invariant

Definition
∀ S-box S,∀ leakage value ` = (win,wout)
we define

NS(win,wout) = #{x ∈ Fn
2 s.t. HW(x) = win,HW(S(x)) = wout}

Prop
Let n the bus size of S. If NS(win,wout) is non-zero then

#AIL(S,win,wout) ≥ 2n + 1− NS(win,wout)

NS(win,wout) small a lot of linear relations between input and output
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An upper bound on the complexity

If plaintext (or ciphertext) known

Plaintext︷ ︸︸ ︷

︸ ︷︷ ︸
NS1 × NS2 × NS3 × . . .NSn

⇒ leakages⇒ constraints⇒ exhaustive search reduced to
∏

i NSi

Ex. with PRESENT : E(
∏

i NSi) = 229 (instead of 264)
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Unknown P/C or few consecutive leakages

NS(win,wout) small⇒ exhaustive search reduced
but must be done on 2 consecutive rounds
NS(win,wout) very small (≤ 6)⇒ fixed input/output bits!

 subkey bits deduced without knowing plaintext/ciphertext
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Experiments

Implementation:
algebraic cryptanalysis library (systems generator)
ASCA in MAGMA

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB (F4)
reject of leakages with large NS

reject of leakages with small NS

no consecutive rounds with leakages
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Experiments

Implementation:
algebraic cryptanalysis library (systems generator)
ASCA in MAGMA

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB (F4) SAT-solvers
reject of leakages with large NS (<3h)
reject of leakages with small NS (>3h)
no consecutive rounds with leakages (>3h)

Analysis seems valid with both Gröbner basis and SAT-solver
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ASCA Resistant S-Boxes ?
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Are there ASCA resistant S-Boxes ?

Requirements:
few fixed input/output bits
few linear relations

 NS large for a lot of leakages

A first class: NS max for all leakages

NS(win,wout) = #(HW−1(win)
⋂

S−1(HW−1(wout)))

Then, S must satisfy

HW−1(win) = S−1(HW−1(wout))

and
win = wout or win = n− wout
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Resistant S-Boxes ?

Characterization:

S(x) = π(x)⊕ f (HW(x))(1, ..., 1)

π(x) = permutation stable under HW (i.e. HW(x) = HW(π(x)))
f = boolean function s.t. ∀x ∈ {0, . . . , n}, f (x) = f (n− x)

Example of such 4-bit S-box:
x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 0 B D C E 6 9 8 7 5 3 1 A 2 4 F

win = wout or win = n− wout
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Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB SAT-solver
reject of leakages with large NS

reject of leakages with small NS

no consecutive leaked rounds
with resistant S-boxes
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Resistant S-Boxes ?

Proposition:
Let S an n-bit optimally ASCA-resistant S-Box.
Then we have

n even ⇒ nonlinearity(S) = 0

Proof:
win = wout or win = n− wout

then win + wout ≡ 0 (mod 2) because n is even,
and ∀x ∈ Fn

2, 〈x|(1, . . . , 1)〉+ 〈S(x)|(1, . . . , 1)〉 ≡ 0 (mod 2)

Lin(S) = max
a∈Fn

2,b∈F
n
2\{0}

∣∣∣∣∣∣
∑
x∈Fn

2

(−1)〈x|a〉+〈S(x)|b〉

∣∣∣∣∣∣ = 2n

�
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Perspectives

Open problem:
(optimally) ASCA-resistant + strong against linear cryptanalysis ?

Perspectives:
Other leakage models
Leakages with noise/errors
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Some other leakage models
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Example 1 : Hamming Distance Leakage Model

x1...
xn

⇒ S ⇒
y1...
yn

HD(x, y) = HW(x⊕ y)

HD model :

E(#AIL) = 2, 3, E(NS) ' 25,9

Upper bound (first round):

PRESENT: E(NS)
8 ' 247

⇒ ' 70% (< 3h)
AES: E(NS)

16 ' 290

d 0 1 2 3 4 5 6 7 8
NS(d) 0 0 16 56 81 64 30 8 1
#AIL(S, d) 0 0 10 3 1 1 1 9 16
fixed bits 0 0 0 0 0 0 0 0 16

Figure : HD model and PRESENT
S-Box

Perspectives:
better leakages exploitation / using more HD
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Example 2 : uncertain Hamming Weight

x1...
xn

⇒ S ⇒
y1...
yn

{win,win + 1} {wout,wout + 1}

Observations :
E(lin. eq.) = 2, 6

E(NS) ' 25

Upper bound (first round) PRESENT: E(NS)
8 ' 241 (SAT solver)

Perspectives:
on AES
larger error rate
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Example 3 : Side Channel Collision Attacks

Side Channel Collision Attacks seen as ASCA
Assumptions : equalities between intermediate bits

Experiments with SAT-solver :
1 with extremal rounds
2 without extremal rounds

Perspectives:
Criterion of success
(complexity)?
Exploit new collisions (e.g.
middle rounds) ?
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Example 4 : fault attack with algebraic methods

faulty
ciphertexts


x4 + s1s3 + s2 + s4 + k4 + 1,

.

.

.
s3y124 + y121y124 + y121 + . . .
y124k122 + y124k123 + y124 + k121 + . . .


x4 + s1s3 + s2 + s4 + k4 + 1,
y124k122 + y124k123 + y124 + k121 + . . .

.

.

.
s121s122 + s121s123 + s121s124 + . . .

Experiment on AES:
1 Piret and Quisquater DFA (round 7)

Perspectives:
1 faults on other rounds
2 Other fault models (Chong Hee Kim, 2011) /
3 Other cryptosystems: DES (Courtois2010), . . .
4 Criterion of success (complexity) ?
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On public-key cryptography :
Attacking (EC)DSA with only an

implicit hint
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Algebraic cryptanalysis with additional information

Cryptographic
Algorithm

(signature schemes) Modeling



k1s1 = h1 + ar1 mod q
k2s2 = h2 + ar2 mod q

.

.

.
.
.
.

ki = . . .
kj = . . .

Solving
in practice ?

additional
information

on secret data

Possible scenarios:
power analysis (known bits)⇒ Howgrave-Graham and Smart (2001), . . .

fault attacks⇒ Bao (1996), Giraud and Knudsen (2004), . . .

locked register (RSA)⇒ Implicit Factoring, May Ritzenhofen (2009)

with DSA-like schemes ?
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With only an implicit hint: the case of (EC)DSA

Framework:
Let (Mi, Si) be given signed messages with DSA-like schemes.
Assumption: nonces share a portion of their (unknown) bits

Our results:
secret key found in polynomial time
positions for shared bits: MSB, LSB, Middle, etc
implicit hint is exploited by lattice method (shortest vector)
required shared bits/signatures comparable to explicit methods
(e.g. ≈ 3 shared bits on 100 signed messages)
efficient with 1 shared bit/400 signatures
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DSA-like schemes

We recall the DSA-style signature scheme:

DLP instance:
G group of prime order q (2N−1 ≤ q < 2N)
private key is an integer a ∈ {1, . . . , q− 1}
public key is ga ∈ G, where g is a generator of G

Signature:
to sign a message m, the signer computes h = HASH(m) and
chooses a random number k ∈ {1, . . . , q− 1} called the ephemeral
key or nonce
the signature is the pair (r, s) given by

r = gk mod q and s = k−1(h + ar) mod q
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Our assumptions

To simplify, we choose the size of q equals to N = 160 bits (thus a and
ki are < 2160)

Attackers has messages mi with associated signatures (ri, si)
i = 1, . . . , n

Implicit Hint
all ephemeral keys ki used to signed mi shared δ bits between their
MSB/LSB:

ki = kL k̃i kM
0 t t′ 160

160− δ

Notice that ki, k̃i, kL and kM are unknown
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

S :


k1s1 = h1 + ar1 mod q
k2s2 = h2 + ar2 mod q

k1 = kL + 2tk̃1 + 2t′kM

k2 = kL + 2tk̃2 + 2t′kM
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

S :

{
(kL + 2tk̃1 + 2t′kM)s1 = h1 + ar1 mod q
(kL + 2tk̃2 + 2t′kM)s2 = h2 + ar2 mod q
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

S :

{
(kL + 2tk̃1 + 2t′kM)s1 = h1 + ar1 mod q
(kL + 2tk̃2 + 2t′kM)s2 = h2 + ar2 mod q

Elimination of the variables kL and kM:

2−t(s−1
1 h1 − s−1

2 h2) + 2−ta(s−1
1 r1 − s−1

2 r2)− (k̃1 − k̃2) = 0 mod q
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

2−t(s−1
1 h1 − s−1

2 h2) + 2−ta(s−1
1 r1 − s−1

2 r2)− (k̃1 − k̃2) = 0 mod q

F(x0, x1, x2) = x0α+ x1β − x2 ∈ Fq[x0, x1, x2] verifies F(1, a, κ1,2) = 0

α = 2−t(s−1
1 h1 − s−1

2 h2) mod q

β = 2−t(s−1
1 r1 − s−1

2 r2) mod q

κ1,2 = (k̃1 − k̃2)
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (two signatures):

F(x0, x1, x2) = x0α+ x1β − x2 ∈ Fq[x0, x1, x2] verifies F(1, a, κ1,2) = 0

The set of solutions L of F forms a lattice :

L = {(x0, x1, x2) ∈ Z3 : x0α+ x1β − x2 = 0 mod q}

with v0 = (1, a, κ1,2) ∈ L
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Shared MSB and LSB: first lattice (n > 2 signatures)

Implicit hypothesis:

ki = kL k̃i kM
0 t t′ 160

160− δ

Polynomial system modeling (n > 2 signatures):
α2 + aβ2 − κ1,2 ≡ 0 (mod q)
α3 + aβ3 − κ1,3 ≡ 0 (mod q)

...
...

...
...

αn + aβn − κ1,n ≡ 0 (mod q)

αi = 2−t(s−1
1 m1 − s−1

i mi) mod q, βi = 2−t(s−1
1 r1 − s−1

i ri) mod q, κi,j = k̃i − k̃j

L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}
with v0 = (1, a, κ2, . . . , κn) ∈ L
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Shared MSB and LSB: first lattice (n > 2 signatures)

L = {(x0, . . . , xn) ∈ Zn+1 : x0αi + x1βi − xi = 0 mod q (i = 2, . . . , n)}
with v0 = (1, a, κ2, . . . , κn) ∈ L

The lattice L is generated by the row-vectors of the matrix

M =


1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


and (1, a, λ2, . . . , λn) ·M = v0 for some λi.
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Shared MSB and LSB: first lattice, first result

Gaussian Assumption

If ||v0||2 is smaller than d
2πe Vol(L)

2
d then v0 is a shortest vector of L.

Here the dimension is d = n + 1.

Theorem 1
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption

2159−δ ≤ a < 2160−δ
ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the vector v0 is a shortest vector in L as soon as

δ ≥ 320 + (n− 1)
n + 1

+
1 + log2(πe)− log2(

n+1
n )

2

ex: 32 bits shared⇒ 10 signatures needed
38/46



Shared MSB and LSB: improvement

The lattice L is generated by the row-vectors of the matrix

M =


1 0 α2 . . . αn

0 1 β2 . . . βn

0 0 q . . . 0
...

...
...

. . .
...

0 0 0 . . . q


and the vector (1, a, λ2, . . . , λn) ·M = (1, a, κ2, . . . , κn) = v0.

⇒ Cancel the second coefficient of v0
⇒ Considering a new lattice L.
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Shared MSB and LSB: improvement

Let L′ (dimension n) generated by the row-vectors of the matrix

M′ =


1 α2 . . . αn

0 β2 . . . βn

0 q . . . 0
...

...
. . .

...
0 0 . . . q


and the vector (1, a, λ2, . . . , λn) ·M′ = (1, κ2, . . . , κn) = v′0.

⇒ The secret a is no more contained in v′0
⇒ The matrix M do not form a basis of the lattice
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Shared MSB and LSB: improvement

Theorem 2
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption
2159−δ ≤ a < 2160−δ ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the vector v′0 is a shortest vector in L′ as soon as

δ ≥ 320 + (n− 2)
n

+
1 + log2(πe)− log2(

n
n−1)

2

ex: 32 bits shared⇒ 11 signatures needed
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Shared MSB and LSB: improvement bis

⇒ v′0 = (1, κ2, . . . , κn), using weighted norm

〈(x0, . . . , xn), (y0, . . . , yn)〉 :=
n∑

i=0

xiyi22(160−dlog2(v0,i)e)

Theorem 3
Let be given n signatures (ri, si). Under the following assumptions

Gaussian Assumption
2159−δ ≤ a < 2160−δ ki = kL k̃i kM

0 t t′ 160

160− δ

Implicit hint: nonces ki share δ bits (LSB/MSB)
Then the vector v′0 is a shortest vector in L′ as soon as

δ ≥ 160 + (n− 2)
n− 1

+
n(1 + log2(πe))

2(n− 1)
(1)
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Theoretical comparison
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ex: 32 bits shared⇒ 7 signatures needed
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Performing the computations

Computation of a shortest vector
This is an NP-hard problem ! The complexity is

Exponential in d by using Kannan’s algorithm
Polynomial in d if v0 can be found with LLL (Polynomial complexity
but approximate (exponential 2d) shortest vector)

⇒ Experimented using LLL: we always obtain the private key
⇒ The computational time is not more than one minute (Magma 2.17)
⇒ In practice, the attack can be mounted with δ < 3
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Generalization: shared blocks

General implicit hint:

ki= ki,0

δ1

b1 ki,1

δj

bj ki,j

δl

bl ki,l

0 p1 t1 pj tj pl tl N

⇒ More technical but comparable results
ex with 3 blocks: 7 signatures→ 37 shared bits need
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Perspectives

Remarks:
ECDSA implicit attack can be applied mutatis mutandis on
ElGamal or Schnorr signatures
Backdoor in PRNG using such implicit hint are undetectable with
Dieharder/STS

Perspectives:
Implicit hints in other cryptosystems?
Other kind of implicit hints ? (linear, polynomial relations, ... )
New statistical tests ?
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Conclusion

Additional information (even implicit) exploited with algebraic
method on both symmetric and asymmetric cryptographic systems
equivalent leakage models ?
ex: implicit hint (DSA)⇐⇒ collisions (ASCA)

Faugère, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks,
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An Analysis of Algebraic Side Channel Attacks, February 2012,
Journal of Cryptographic Engineering
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