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Cryptology

Cryptography is the discipline related to data protection and
communications

General cryptanalysis methods
@ Linear cryptanalysis

@ Differential cryptanalysis
@ Algebraic cryptanalysis
° ..
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Algebraic cryptanalysis

Cryptographic

Algorithm
(AES, DSA, ..)

Secret
(key, message, ...)

Algebraic cryptanalysis

Modeling

-—

X% + xrky + X1 + xkp + x3 + xgs4+
s184 + 5354 + 53 + saky + 54 + kiky + Ky + k3,
X4 +s153+ 852+ s+ kg + 1,

$21 + 550124 + 53Y124 + Yi21124 + Y121+
y123Y124 + yi2aki22 + yi2akioz + Y124 + kiog

Solving

N

O
ST
[

—ers

@ Security = hardness of solving these polynomial systems
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Algebraic cryptanalysis with additional information

Cryptographic
Algorithm
(AES, DSA, ...)

Modeling

x1xp + x1ky + xp 4 xokyp + x3 + xg454+
5184 + 5354 + 53 + saky + 54 + kiky + Ky + k3,
Xyt 5153 +s2 +sg+k+ 1,

s21 + 850V124 + $3Y124 + Yi21v124 +yi2r + - - -

Solving
in practice ?
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Algebraic cryptanalysis with additional information

Cryptographic
Algorithm
(AES, DSA, ...)

additional .-~
information-~
on secret data

x1xp + x1ky + xp 4 xokyp + x3 + xg454+
5184 + 5354 + 53 + saky + 54 + kiky + Ky + k3,
Xyt 5153 +s2 +sg+k+ 1,

s21 + 850V124 + $3¥124 + Yi21v124 +yi2r + - - -
S8y + 5183 + 85154 + ...
$1245125 + S1248126 + - - -

Solving
in practice ?
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Side Channel Analysis

Cryptographic algorithms implementation (smartcard, FPGA, Microcontroller,
...) ~ physical leakage of information

Timing EM radiations

. Smartcard .

Power consumption Faults

“A correct implementation of a strong protocol is not necessarily secure”
(Kocher, 1999)
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Solving methods

Symmetric-key cryptography: Public-key cryptography:

AES, PRESENT (EC)DSA
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Solving methods

Symmetric-key cryptography: Public-key cryptography:

AES, PRESENT (EC)DSA
Small Characteristic Field Large Characteristic or
(F,) Integer

SAT solver & Grébner Basis Lattice reduction (LLL)
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Contributions

Symmetric-key cryptography:

leakage models

HW, HD, ...

criterion of success
complexity upper-bounded
resistant cryptosystems

[3
3

Faugere, Goyet, Renault, A new
Criterion for Effective Algebraic Side
Channel Attacks, COSADE 2011

Carlet, Faugere, Goyet, Renault,

An Analysis of Algebraic Side Channel
Attacks, February 2012,

Journal of Cryptographic Engineering

Public-key cryptography:

@ New situation to attack
(EC)DSA

@ Implicit information

@ unknown shared bits
(locked register)

@ Faugeére, Goyet, Renault,

Attacking (EC)DSA Given Only an

Implicit Hint, SAC 2012
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Algebraic Side Channel Attack on
block ciphers



Algebraic Side Channel Attacks (ASCA)

Attacks against block ciphers proposed by Renauld, Standaert and
Veyrat-Charvillon (CHES 2009, Inscrypt2009)

Hamming Weight Leakage

f\ X4+ 5153 + 52 + 54 + kg + 1,
$3Y124 + Y121Y124 + Y121 - - -

o 3
D
5
= f \\\ Vi2ak122 + yioakio3 + Yioa + ko + - -
;F :— T T T
Time
X4+ 5153 + 50+ 54+ kg + 1,
Yi2aki22 + yiakio3 + yioa + kior + - -
Key
SAT solver s1215122 + S1215123 + S1215124 + - -

Interesting aspects:

Nb observations: 1 for ASCA / > 1000 DPA
Solving step: 1swith HW / oo without
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Main goal: analysis of algebraic phase

Hamming Weight Leakage

f\ X4+ szt sy + ke + 1,
$3¥124 + Yi21¥124 +yi21 + - -

\ Yi24ki22 + yi24ki23 + yioa +kiop -

\oltage

Lo bbbl

Grobner Basis Xy 48153+ 92 + 54 + ks + 1,

Yi2ak122 + yi2aki23 + yioa + ki + - -

M s1215122 + s1215123 + s1218124 + - -

Our goal : analysis of algebraic phase
@ Explain the efficiency (solving complexity)
@ Resistant Cryptosystems
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Grobner Basis Algorithm

g1 (kiog, k127, -+ -5 X2, X1)
tastatathtl, Grbbner Basis :
: 8s—i(x2,x1)
53V124 + V1219124 + Y121 - - - f
Yioaki22 + yi2ak123 +yioa + ki + - Algorithm o L)
§— b
gs(x1)

@ Degree of equations during computation
@ Intrinsic to input problem
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System modeling a block cipher

@ S-boxes are the only nonlinear part of many block ciphers
@ They give the resistance against algebraic attacks

x4+ 5153+ 50 +sq4 + kg 41,
S8y + 5183 + 85154 + ...
S1215122 + S1215123 + S1215124 + - - -

3

$3¥124 + Yi21y124 +yi21 + - -
yi24ki22 + yi2aki2z + yioa +kiop + -

= S-boxes + HW leakages ? J
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Trivial example: w;, =0

Let S an n-bit S-box. i
If w;,, = 0 then S = :
x1:x2:“':xn:0 Yn

and the y; are given by

Influence of leakages:

@ S-box completely described by 2n linear relations
@ Degree reduced = Algebraic resistance canceled
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HW mOdel (‘/Vl'llﬁ W()m)
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HW model : (Wi, Wou)

V1
= S = :
Yn
N\ \
Win Wout

PRESENT S-box example, n = 8
Lo~ o[ e [e[efefe]e]7]e]

16

0

1 9 R

5 S N T AN @ Most gf Ieakage§ give a
S Y e lot of linear relations:

4 16 [ 15|14 | 2 | 11 3 [12] 13| 16

5 i3 [18 [ 2 [ 7 |10 [11 [ 13 E(#A[L) ~ &

6 15 [ 12 | 15 7 15 | 14 . . .

u 13 13 @ Algebraic Immunity with

Leakage: #AI; (wiy, wo,
Figure : Nb of linear relations ge: AL (Win, Wou)

= system partly linearized = solving complexity? o



Another invariant

Definition

vV S-box S,V leakage value ¢ = (win, Wour)
we define

Ns(Win, Wour) = #{x € F5 s.t. HW(x) = win, HW(S(x)) = Wou }
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Another invariant

vV S-box S,V leakage value ¢ = (win, Wour)
we define

Ns(Win, Wour) = F#{x € F5 s.t. HW(x) = wi, HW(S(x)) = Wour }

Prop
Let n the bus size of S. If Ng(win, wou) iS NON-zero then

#AIL(Sa Win, Wout) >2n+1-— NS(Wina Wout)

Ns(win, wour) SMall ~~ a lot of linear relations between input and output
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An upper bound on the complexity

If plaintext (or ciphertext) known

Plaintext
I

TTTTTTTTTTTTTTT

NS1 X NS2 X NS3 X .. -NS,,

= leakages = constraints = exhaustive search reduced to [ [, N,
Ex. with PRESENT : E([[, Ns,) = 2% (instead of 2%%)
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Unknown P/C or few consecutive leakages

@ Ns(win, wour) Small = exhaustive search reduced
but must be done on 2 consecutive rounds

@ Ns(Win, wour) Very small (< 6) = fixed input/output bits!

B,

1 Yi Yn)

~» subkey bits deduced without knowing plaintext/ciphertext
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Implementation:
@ algebraic cryptanalysis library (systems generator)
@ ASCA in MAGMA

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB (F4)
@ reject of leakages with large Ng v
@ reject of leakages with small Ng X
@ no consecutive rounds with leakages X
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Implementation:
@ algebraic cryptanalysis library (systems generator)
@ ASCA in MAGMA

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB (F4) SAT-solvers

@ reject of leakages with large Ng v v'(<3h)
@ reject of leakages with small Ng X %(>3h)
@ no consecutive rounds with leakages X %(>3h)

Analysis seems valid with both Grébner basis and SAT-solver
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ASCA Resistant S-Boxes ?
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Are there ASCA resistant S-Boxes ?

Requirements:
o few fixed input/output bits
@ few linear relations

~» Ng large for a lot of leakages

A first class: Ny max for all leakages
NS(Wimwout) = #(HW?l(Win) ﬂSil(Hwil(Wout)))

Then, S must satisfy

I‘IW_1 (Win) = S_l (I'IVV_1 (Wout))

and

Win = Wour OF Wiy = 1 — Woyr
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Resistant S-Boxes ?

S(x) =7(x) ®f(HW(x))(1,...,1)

@ 7(x) = permutation stable under HW (i.e. HW(x) = HW(m(x)))
@ f =boolean function s.t. Vx € {0, ... ,n},f(x) =f(n —x)

v

Example of such 4-bit S-box:

x [0[1]2[3[4[5[6[7[8[9]A[B[C[D[E[F
S [[0[B[D[C[E[6|9[8[7[5[3[1|A[2[4[F

Win = Wour OF Wip, = 1 — Woyt

21/46



Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments:

GB SAT-solver
reject of leakages with large Ny v/
reject of leakages with small Ny X
no consecutive leaked rounds X
with resistant S-boxes X

XXX <
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Resistant S-Boxes ?

Proposition:

Let S an n-bit optimally ASCA-resistant S-Box.
Then we have

n even = nonlinearity(S) =0

Proof:
Win = Wout OF Wi = 1N — Woys

then  w;, +wy =0 (mod 2) because n is even,
and VxelF;, (x(L,...,1))+ (Sx)|(1,...,1)) =0 (mod 2)

Lin(S) = 2(71)<xla>+<S(x)|b> _ on

x€l;

max
a€F2 beF2\ {0}
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Perspectives

(optimally) ASCA-resistant + strong against linear cryptanalysis ?

Perspectives:
@ Other leakage models
@ Leakages with noise/errors
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Some other leakage models
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Example 1 : Hamming Distance Leakage Model

HD(x,y) = HW(x &)
HD model :

@ E(#AIlL) = 2,3, E(Ns) ~ 2%°

; d 07772 3 [4 15 [6 718
Upper bound (first round): :@573(;,@ o TS A e A e
@ PRESENT: E(N5)8:247 fixedbits  [[ 000 |0 o
= v/~ 70% (< 3h) Figure : HD model and PRESENT
S-Box

@ AES: E(Ns)'® ~ 270 %

@ better leakages exploitation / using more HD
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Example 2 : uncertain Hamming Weight

Y1
= S = :
Yn
N\ N\
{Wim Win + 1 } {W()1417 Wout + 1 }
Observations :
@ E(lin.eq.) =2,6
o E(Ns) ~ 25

@ Upper bound (first round) PRESENT: E(Ns)® ~ 24! v/(SAT solver)

@ on AES

@ larger error rate
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Example 3 : Side Channel Collision Attacks

Side Channel Collision Attacks seen as ASCA
Assumptions : equalities between intermediate bits

| plaintext

addRoundKey Y 1 1 = .
2N Experiments with SAT-solver :
31 SlBox‘Lam @ with extremal rounds v/
pLayer @ without extremal rounds %
1
¥ .
N—spoxdy e | @ Criterion of success
pLayer (complexity)?
addRoundKey Y

5 @ Exploit new collisions (e.g.

|Tph;—rtcT| middle rounds) ?
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Example 4 : fault attack with algebraic methods

faulty

Cipherrexrs s3y124 + Y121¥124 + V121 + -

\ / yi2aki22 + yi2akioz + yioa + k121 +.

{ X4+ 5183 + 52 + 54 + kg + 1,

{ X4+ 5153 + 52 + 54+ kg + 1,

yi2aki2a + yi2akioz + yioa +kiop + .-

S1215122 + $1215123 + S1215124 + - -

Experiment on AES:
@ Piret and Quisquater DFA (round 7) v/

@ faults on other rounds

© Other fault models (Chong Hee Kim, 2011) /
© Other cryptosystems: DES (Courtois2010), ...
© Criterion of success (complexity) ?




On public-key cryptography :
Attacking (EC)DSA with only an
implicit hint
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Algebraic cryptanalysis with additional information

kysq hy 4+ ary mod g

Cryptographic sy —  hytar modq
Algorithm , :
(signature schemes) ~ Modeling 5=
Solving

. 7 in practice ?
additional .-

information-”~
on secret data

Possible scenarios:

@ power analysis (known bits) = Howgrave-Graham and Smart (2001), ...
@ fault attacks = Bao (1996), Giraud and Knudsen (2004), . ..
@ locked register (RSA) = Implicit Factoring, May Ritzenhofen (2009)

@ with DSA-like schemes ?
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With only an implicit hint: the case of (EC)DSA

Framework:

Let (M;, S;) be given signed messages with DSA-like schemes.
Assumption: nonces share a portion of their (unknown) bits

Our results:
@ secret key found in polynomial time
@ positions for shared bits: MSB, LSB, Middle, etc
@ implicit hint is exploited by lattice method (shortest vector)

@ required shared bits/signatures comparable to explicit methods
(e.g. =~ 3 shared bits on 100 signed messages)

| \

@ efficient with 1 shared bit/400 signatures

.
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DSA-like schemes

We recall the DSA-style signature scheme:

@ DLP instance:

e G group of prime order g (2¥~! < g < 2V)

e private key is anintegera € {1,...,g— 1}

@ public key is g* € G, where g is a generator of G
@ Signature:

e to sign a message m, the signer computes 7 = HASH (m) and
e chooses a random number k € {1,...,q — 1} called the ephemeral
key or nonce

o the signature is the pair (r,s) given by

r=g"modg and s=k"'(h+ar)modq
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Our assumptions

To simplify, we choose the size of g equals to N = 160 bits (thus « and
k; are < 216%)

Attackers has messages m; with associated signatures (r;, s;)
i=1,....n

Implicit Hint
all ephemeral keys k; used to signed m; shared ¢ bits between their
MSB/LSB:

ki =| kg, k; Ky

Notice that &;, k;, k;, and ky; are unknown
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki: kL

ki km

7

Polynomial system modeling (two signatures):

ks
koso

ky
ka

hy + ar; mod
hy + ar, mod

kp + 2"k + 2"
ki + 2'ky + 2"

160

q
q

kpt
kyy
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = kL ki kM

0 t 4 160

Polynomial system modeling (two signatures):

f (k2% + 2 k)si = By +ar mod g
"\ (kp + 2% +2"ky)sy = hy+ar; mod g
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = |k, ki km

Polynomial system modeling (two signatures):

S : (kL + 2tk:1 + 2t:kM)S1 = hl + ary mod q
| (kp + 2% +2"ky)s2 = ho+ar, mod g

Elimination of the variables k; and ky;:

2_t(s1_1h1 — sz_lhz) -+ 2_ta(sl_1r1 — sz_lrg) — (k~1 — k~2) =0 modg
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = | Kk, ki km

Polynomial system modeling (two signatures):

27t(s1_1h1 — sz_lhz) + Z*Ia(sl_ln — sz_lrz) — (k~1 — k~2) =0 mod g

F(x0,x1,x2) = xoa 4+ x1 3 — x2 € Fy[x0, x1,x2] verifies F(1,a,r15) =0

@ a=27"(s; ' — s, ') mod g
@ 3=27"(s;'r — 55 ') mod g
o H,],Q = (k] —kg)
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Shared MSB and LSB: first lattice

Implicit hypothesis:

ki = |k, ki km

0 t 4 160

Polynomial system modeling (two signatures):

‘ F(x,x1,%2) = xoa 4+ x1 3 — x2 € Fy[x0, x1,x2] verifies F(1,a,r15) =0 ‘

The set of solutions L of F forms a lattice :

L= {(x0,x1,%2) € Z> : xpao +x13 —x =0 mod ¢}

withvo = (1,a,k12) €L
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Shared MSB and LSB: first lattice (n > 2 signatures)

Implicit hypothesis:

160 — 0
ki = kL k,- kM
0 t ’ 160

Polynomial system modeling (n > 2 signatures):

art+abr—kip = 0 (mod q)
v +afy—ri3 = 0 (mod g)
o, +ap, — Kip = 0 (mod q)

o =27"(s7 ' my — 57 'm;) mod g, B; =27 (s7'ry — 57 'ri) mod g, Kij = k; — K;

L={(x0,...,%) €Z""" : xo0; + x18; —x; =0 mod q(i =2,...,n)}
with vo = (1,a,k2,...,k,) EL
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Shared MSB and LSB: first lattice (n > 2 signatures)

L={(x0,...,%) €Z"" : xo0; + x18; —x; =0 mod q(i =2,...,n)}
withvg = (1,a,k2,...,k,) €L

The lattice L is generated by the row-vectors of the matrix

1 0 an ... ay
01 B ... B,
M=100 ¢g ... 0
00 0 ... ¢

and (1,a, \,..., \,) - M = vy for some ;.
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Shared MSB and LSB: first lattice, first result

Gaussian Assumption

If [[vo|[* is smaller than 5L Vol(L)§ then v is a shortest vector of L.
Here the dimensionisd = n + 1.

Theorem 1

Let be given n signatures (r;, s;). Under the following assumgtions
@ Gaussian Assumption ki:’kL I ]7; IkM‘
P 2159—5 <a< 2160—6 0 P 160
@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)

Then the vector v, is a shortest vector in L as soon as

| N\

3204+ (n—1) N 1 + log,(me) — log, (“t1)

o>
- n—+1 2

.

ex: 32 bits shared = 10 signatures needed
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Shared MSB and LSB: improvement

The lattice L is generated by the row-vectors of the matrix

1 0 an ... «ay
01 B ... By
M=| 00 ¢qg ... O
00 0 ... ¢

and the vector (1,a, \y,..., \,) - M = (L,a,k2,...,K,) = V.

= Cancel the second coefficient of v
= Considering a new lattice L.
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Shared MSB and LSB: improvement

Let L’ (dimension n) generated by the row-vectors of the matrix

1 ap ... oy
0 B ... Bn
M=10 ¢ 0
0 O q

and the vector (1,a, Ay, ..., \y) - M = (1,52, ..., Ky) = V.

= The secret a is no more contained in v,
= The matrix M do not form a basis of the lattice
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Shared MSB and LSB: improvement

Let be given n signatures (r;, s;). Under the following assumptions
@ Gaussian Assumption ki — ’kL | 7 ] kM\
o 0 ‘ 7160

@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)
Then the vector v is a shortest vector in L' as soon as

- 320 + (n —2) N 1 + logy(me) —log, (%7)
- n 2

0

ex: 32 bits shared = 11 signatures needed
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Shared MSB and LSB: improvement bis

= v, = (1, k2, ..., Ky), using weighted norm

(Fos- 3%y (s -y 30)) = 3 22160z 0.0
i=0

Theorem 3

Let be given n signatures (r;, s;). Under the following assumptions
° Gaus_S|an Assumption K — ’kL | 3 IkM‘
o == 0 [ 7160

@ Implicit hint: nonces k; share ¢ bits (LSB/MSB)
Then the vector v;, is a shortest vector in L' as soon as

- 160+ (n—2)  n(1+log,(mwe))

0 n—1 2(n—1) @




Theoretical comparison

100 — : : : :
90 -

80 |
70 -
60 -
50 -
40
30 -
20
10 1
0

6, number of shared bits

0 5 10 15 20 25 30
n, number of messages

ex: 32 bits shared = 7 signatures needed
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Performing the computations

Computation of a shortest vector

This is an NP-hard problem ! The complexity is
@ Exponential in d by using Kannan'’s algorithm

@ Polynomial in d if vo can be found with LLL (Polynomial complexity
but approximate (exponential 2¢) shortest vector)

= Experimented using LLL: we always obtain the private key
= The computational time is not more than one minute (Magma 2.17)
= In practice, the attack can be mounted with § < 3
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Generalization: shared blocks

General implicit hint:

61 5]' 6[
k= ki,O b, k,'71 bj k,'J b, ki,l
0O pt D t Cpo N

=- More technical but comparable results
ex with 3 blocks: 7 signatures — 37 shared bits need
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Remarks:

@ ECDSA implicit attack can be applied mutatis mutandis on
ElGamal or Schnorr signatures

@ Backdoor in PRNG using such implicit hint are undetectable with
Dieharder/STS

@ Implicit hints in other cryptosystems?
@ Other kind of implicit hints ? (linear, polynomial relations, ... )
@ New statistical tests ?
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Conclusion

@ Additional information (even implicit) exploited with algebraic
method on both symmetric and asymmetric cryptographic systems

@ equivalent leakage models ?
@ ex: implicit hint (DSA) <= collisions (ASCA)
@ Faugere, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks,

COSADE 2011

@ Carlet, Faugere, Goyet, Renault,
An Analysis of Algebraic Side Channel Attacks, February 2012,

Journal of Cryptographic Engineering

@ Faugere, Goyet, Renault,
Attacking (EC)DSA Given Only an Implicit Hint, SAC 2012
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