## Algebraic Side Channel Cryptanalysis

## Christopher Goyet

Academic Advisors : Jean-Charles Faugère and Guénaël Renault Industrial Advisor : Olivier Orcière

> PolSys - LIP6

LCH - Thales Communications and Security

November 7, 2012

## Cryptology

Cryptography is the discipline related to data protection and communications
General cryptanalysis methods

- Linear cryptanalysis
- Differential cryptanalysis
- Algebraic cryptanalysis


## Algebraic cryptanalysis



## Algebraic cryptanalysis

- Security $\Rightarrow$ hardness of solving these polynomial systems


## Algebraic cryptanalysis with additional information

Cryptographic Algorithm (AES, DSA, ...)


Solving
in practice ?

## Algebraic cryptanalysis with additional information

Cryptographic
Algorithm
(AES, DSA, ...)


## Solving <br> in practice ?

## Side Channel Analysis

Cryptographic algorithms implementation (smartcard, FPGA, Microcontroller, ...) $\rightsquigarrow$ physical leakage of information

Timing

Power consumption

EM radiations


Faults
"A correct implementation of a strong protocol is not necessarily secure" (Kocher, 1999)

## Solving methods

## Symmetric-key cryptography:

 AES, PRESENTPublic-key cryptography:
(EC)DSA

## Solving methods

Symmetric-key cryptography:
AES, PRESENT


Small Characteristic Field ( $\mathbb{F}_{2}$ )


SAT solver \& Gröbner Basis

Public-key cryptography:
(EC)DSA


Large Characteristic or Integer


Lattice reduction (LLL)

## Contributions

## Symmetric-key cryptography:

- leakage models
- HW, HD, ...
- criterion of success
- complexity upper-bounded
- resistant cryptosystems

Faugère, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks, COSADE 2011
T- Carlet, Faugère, Goyet, Renault, An Analysis of Algebraic Side Channel Attacks, February 2012, Journal of Cryptographic Engineering

## Public-key cryptography:

- New situation to attack (EC)DSA
- Implicit information
- unknown shared bits (locked register)

R Faugère, Goyet, Renault, Attacking (EC)DSA Given Only an Implicit Hint, SAC 2012

## Algebraic Side Channel Attack on block ciphers

## Algebraic Side Channel Attacks (ASCA)

Attacks against block ciphers proposed by Renauld, Standaert and Veyrat-Charvillon (CHES 2009, Inscrypt2009)

Hamming Weight Leakage


## Interesting aspects:

Nb observations: 1 for ASCA / > 1000 DPA Solving step: $1 s$ with HW / $\infty$ without

## Main goal: analysis of algebraic phase



Our goal : analysis of algebraic phase

- Explain the efficiency (solving complexity)
- Resistant Cryptosystems


## Gröbner Basis Algorithm

$$
\left\{\begin{array} { c c } 
{ x _ { 4 } + s _ { 1 } s _ { 3 } + s _ { 2 } + s _ { 4 } + k _ { 4 } + 1 , } & { \text { Gröbner Basis } } \\
{ \vdots } \\
{ s _ { 3 } y _ { 1 2 4 } + y _ { 1 2 1 } y _ { 1 2 4 } + y _ { 1 2 1 } + \ldots } \\
{ y _ { 1 2 4 } k _ { 1 2 2 } + y _ { 1 2 4 } k _ { 1 2 3 } + y _ { 1 2 4 } + k _ { 1 2 1 } + \ldots } & { \text { Algorithm } }
\end{array} \quad \left\{\begin{array}{c}
g_{1}\left(k_{128}, k_{127}, \ldots, x_{2}, x_{1}\right) \\
\vdots \\
g_{s-i}\left(x_{2}, x_{1}\right) \\
\vdots \\
g_{s-1}\left(x_{2}, x_{1}\right) \\
g_{s}\left(x_{1}\right)
\end{array}\right.\right.
$$

## Complexity

- Degree of equations during computation
- Intrinsic to input problem


## System modeling a block cipher

- S-boxes are the only nonlinear part of many block ciphers
- They give the resistance against algebraic attacks

$\Rightarrow$ S-boxes + HW leakages ?


## Trivial example: $w_{i n}=0$

Let $S$ an $n$-bit S-box.
If $w_{\text {in }}=0$ then
$x_{1}=x_{2}=\cdots=x_{n}=0$
and the $y_{i}$ are given by

$$
\begin{array}{|c}
x_{1} \\
\vdots \\
x_{n}
\end{array} \Rightarrow \quad \mathrm{~S} \quad \begin{gathered}
y_{1} \\
\vdots \\
y_{n}
\end{gathered}
$$

$$
w_{i n}=0
$$

$$
y_{1}, \ldots, y_{n}=S(0, \ldots, 0)
$$

## Influence of leakages:

- S-box completely described by $2 n$ linear relations
- Degree reduced $\Rightarrow$ Algebraic resistance canceled


## HW model : $\left(w_{\text {in }}, w_{\text {out }}\right)$



## PRESENT S-box example, $n=8$

| $w_{\text {m }}{ }^{\text {wema }}$ | $\bigcirc$ |  | 2 | 3 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  | ${ }^{16}$ |  |  |  |
|  |  |  |  |  |  |  |  |  |
|  | 16 |  |  |  |  |  |  |  |
|  |  |  |  | 15 |  | 15 | 14 |  |
|  |  |  |  |  |  |  |  |  |

- Most of leakages give a lot of linear relations:
- Algebraic Immunity with

Leakage:

HW model : $\left(w_{\text {in }}, w_{\text {out }}\right)$

$$
\begin{array}{r}
\begin{array}{r}
x_{1} \\
\vdots \\
x_{n}
\end{array} \\
\downarrow_{w_{\text {in }}}
\end{array} \Rightarrow \begin{array}{|}
\substack{y_{1} \\
\vdots \\
y_{n} \\
\hline \\
w_{\text {out }}}
\end{array}
$$

## PRESENT S-box example, $n=8$

| $w_{\text {in }}$ | $w_{\text {out }}$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 |  |  |  |  | 16 |  |  |  |  |
| 0 |  |  |  |  | 9 |  |  |  |  |
| 2 |  |  | 15 | 15 | 8 | 13 | 15 |  |  |
| 3 |  |  | 9 | 5 | 9 | 5 | 9 |  |  |
| 4 | 16 | 15 | 14 | 2 | 11 | 3 | 12 | 13 | 16 |
| 5 |  | 13 | 13 | 2 | 7 | 10 | 11 | 13 |  |
| 6 |  | 15 | 12 | 15 | 7 | 15 | 14 |  |  |
| 7 |  |  | 13 |  | 13 |  |  |  |  |
| 8 |  |  | 16 |  |  |  |  |  |  |

Figure : Nb of linear relations

- Most of leakages give a lot of linear relations: $\mathbb{E}\left(\# A I_{L}\right) \simeq 8$
- Algebraic Immunity with Leakage: $\# A I_{L}\left(w_{\text {in }}, w_{\text {out }}\right)$
$\Rightarrow$ system partly linearized $\Rightarrow$ solving complexity?


## Another invariant

## Definition

$\forall$ S-box $S, \forall$ leakage value $\ell=\left(w_{\text {in }}, w_{\text {out }}\right)$ we define

$$
N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)=\#\left\{x \in \mathbb{F}_{2}^{n} \text { s.t. } H W(x)=w_{\text {in }}, H W(S(x))=w_{\text {out }}\right\}
$$

## Another invariant

## Definition

$\forall$ S-box $S, \forall$ leakage value $\ell=\left(w_{\text {in }}, w_{\text {out }}\right)$
we define

$$
N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)=\#\left\{x \in \mathbb{F}_{2}^{n} \text { s.t. } H W(x)=w_{\text {in }}, H W(S(x))=w_{\text {out }}\right\}
$$

## Prop

Let $n$ the bus size of $S$. If $N_{S}\left(w_{i n}, w_{\text {out }}\right)$ is non-zero then

$$
\# A I_{L}\left(S, w_{\text {in }}, w_{\text {out }}\right) \geq 2 n+1-N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)
$$

$N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)$ small $\rightsquigarrow$ a lot of linear relations between input and output

## An upper bound on the complexity

If plaintext (or ciphertext) known

## Plaintext


$\Rightarrow$ leakages $\Rightarrow$ constraints $\Rightarrow$ exhaustive search reduced to $\prod_{i} N_{S_{i}}$
Ex. with PRESENT : $\mathbb{E}\left(\prod_{i} N_{S_{i}}\right)=2^{29}$ (instead of $2^{64}$ )

## Unknown P/C or few consecutive leakages

- $N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)$ small $\Rightarrow$ exhaustive search reduced but must be done on 2 consecutive rounds
- $N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)$ very small $(\leq 6) \Rightarrow$ fixed input/output bits!

$\rightsquigarrow$ subkey bits deduced without knowing plaintext/ciphertext


## Experiments

## Implementation:

- algebraic cryptanalysis library (systems generator)
- ASCA in MAGMA

Experiments performed against PRESENT and AES

## Analysis supported by experiments:

GB (F4)

- reject of leakages with large $N_{S}$ - reject of leakages with small $N_{S}$
- no consecutive rounds with leakages


## Experiments

## Implementation:

- algebraic cryptanalysis library (systems generator)
- ASCA in MAGMA

Experiments performed against PRESENT and AES
Analysis supported by experiments:
reject of leakages with large $N_{S}$
reject of leakages with small $N_{S}$
no consecutive rounds with leakages
reject of leakages with large $N_{S}$
reject of leakages with small $N_{S}$
no consecutive rounds with leakages
reject of leakages with large $N_{S}$
reject of leakages with small $N_{S}$
no consecutive rounds with leakages
GB (F4) SAT-solvers
$\checkmark(<3 h)$
$x(>3 h)$
$x(>3 h)$

Analysis seems valid with both Gröbner basis and SAT-solver

## ASCA Resistant S-Boxes ?

## Are there ASCA resistant S-Boxes?

## Requirements:

- few fixed input/output bits
- few linear relations
$\rightsquigarrow N_{S}$ large for a lot of leakages
A first class: $N_{S}$ max for all leakages

$$
N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)=\#\left(H W^{-1}\left(w_{\text {in }}\right) \bigcap S^{-1}\left(H W^{-1}\left(w_{\text {out }}\right)\right)\right)
$$

Then, $S$ must satisfy

$$
H W^{-1}\left(w_{\text {in }}\right)=S^{-1}\left(H W^{-1}\left(w_{\text {out }}\right)\right)
$$

and

$$
w_{\text {in }}=w_{\text {out }} \text { or } w_{\text {in }}=n-w_{\text {out }}
$$

## Resistant S-Boxes ?

## Characterization:

$$
S(x)=\pi(x) \oplus f(H W(x))(1, \ldots, 1)
$$

- $\pi(x)=$ permutation stable under $H W$ (i.e. $H W(x)=H W(\pi(x)))$
- $f=$ boolean function s.t. $\forall x \in\{0, \ldots, n\}, f(x)=f(n-x)$


## Example of such 4-bit S-box:

\[

\]

## Experiments

## Experiments performed against PRESENT and AES

## Analysis supported by experiments:

- reject of leakages with large $N_{S}$
- reject of leakages with small $N_{S}$ no consecutive leaked rounds with resistant S-boxes

GB SAT-solver

## Resistant S-Boxes ?

## Proposition:

Let $S$ an $n$-bit optimally ASCA-resistant S-Box.
Then we have

$$
n \text { even } \Rightarrow \operatorname{nonlinearity}(S)=0
$$

Proof:

$$
w_{\text {in }}=w_{\text {out }} \text { or } w_{\text {in }}=n-w_{\text {out }}
$$

then $w_{\text {in }}+w_{\text {out }} \equiv 0(\bmod 2)$ because $n$ is even, and $\quad \forall x \in \mathbb{F}_{2}^{n}, \quad\langle x \mid(1, \ldots, 1)\rangle+\langle S(x) \mid(1, \ldots, 1)\rangle \equiv 0(\bmod 2)$

$$
\operatorname{Lin}(S)=\max _{a \in \mathbb{F}_{2}^{n}, b \in \mathbb{F}_{2}^{n} \backslash\{0\}}\left|\sum_{x \in \mathbb{F}_{2}^{n}}(-1)^{\langle x \mid a\rangle+\langle S(x) \mid b\rangle}\right|=2^{n}
$$

## Perspectives

## Open problem:

(optimally) ASCA-resistant + strong against linear cryptanalysis ?
Perspectives:

- Other leakage models
- Leakages with noise/errors


## Some other leakage models

## Example 1 : Hamming Distance Leakage Model



## HD model :

- $\mathbb{E}\left(\# A I_{L}\right)=2,3, \mathbb{E}\left(N_{S}\right) \simeq 2^{5,9}$ Upper bound (first round):
- PRESENT: $E\left(N_{S}\right)^{8} \simeq 2^{47}$

$$
\Rightarrow \checkmark \simeq 70 \%(<3 \mathrm{~h})
$$

Figure : HD model and PRESENT S-Box

- AES: $E\left(N_{S}\right)^{16} \simeq 2^{90} \boldsymbol{x}$

| d | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $N_{S}(d)$ | 0 | 0 | 16 | 56 | 81 | 64 | 30 | 8 | 1 |
| $\# A I_{L}(S, d)$ | 0 | 0 | 10 | 3 | 1 | 1 | 1 | 9 | 16 |
| fixed bits | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 16 |

## Perspectives:

- better leakages exploitation / using more HD


## Example 2 : uncertain Hamming Weight



## Observations :

- $\mathbb{E}($ lin. eq. $)=2,6$
- $\mathbb{E}\left(N_{S}\right) \simeq 2^{5}$
- Upper bound (first round) PRESENT: $\mathbb{E}\left(N_{S}\right)^{8} \simeq 2^{41} \checkmark$ (SAT solver)


## Perspectives:

- on AES
- larger error rate


## Example 3 : Side Channel Collision Attacks

Side Channel Collision Attacks seen as ASCA Assumptions : equalities between intermediate bits


## Experiments with SAT-solver :

(1) with extremal rounds
(2) without extremal rounds $X$

## Perspectives

- Criterion of success (complexity)?
- Exploit new collisions (e.g. middle rounds) ?


## Example 4 : fault attack with algebraic methods

$$
\begin{gathered}
\text { faulty } \\
\text { ciphertexts }
\end{gathered}
$$



## Experiment on AES:

(1) Piret and Quisquater DFA (round 7)
(1) faults on other rounds
(2) Other fault models (Chong Hee Kim, 2011) /
(3) Other cryptosystems: DES (Courtois2010), ...
(4) Criterion of success (complexity)?

# On public-key cryptography : <br> Attacking (EC)DSA with only an implicit hint 

## Algebraic cryptanalysis with additional information

Cryptographic
Algorithm (signature schemes)
additional information on secret data


> Solving in practice?

## Possible scenarios:

- power analysis (known bits) $\Rightarrow$ Howgrave-Graham and Smart (2001), ...
- fault attacks $\Rightarrow$ Bao (1996), Giraud and Knudsen (2004), ...
- locked register (RSA) $\Rightarrow$ Implicit Factoring, May Ritzenhofen (2009)
- with DSA-like schemes ?


## With only an implicit hint: the case of (EC)DSA

## Framework:

Let $\left(M_{i}, S_{i}\right)$ be given signed messages with DSA-like schemes.
Assumption: nonces share a portion of their (unknown) bits

## Our results:

- secret key found in polynomial time
- positions for shared bits: MSB, LSB, Middle, etc
- implicit hint is exploited by lattice method (shortest vector)
- required shared bits/signatures comparable to explicit methods (e.g. $\approx 3$ shared bits on 100 signed messages)
- efficient with 1 shared bit/400 signatures


## DSA-like schemes

We recall the DSA-style signature scheme:

- DLP instance:
- $G$ group of prime order $q\left(2^{N-1} \leq q<2^{N}\right)$
- private key is an integer $a \in\{1, \ldots, q-1\}$
- public key is $g^{\text {a }} \in G$, where $g$ is a generator of $G$
- Signature:
- to sign a message $m$, the signer computes $h=\operatorname{HASH}(m)$ and
- chooses a random number $\mathbf{k} \in\{1, \ldots, q-1\}$ called the ephemeral key or nonce
- the signature is the pair $(r, s)$ given by

$$
r=g^{k} \bmod q \quad \text { and } \quad s=k^{-1}(h+a r) \bmod q
$$

## Our assumptions

To simplify, we choose the size of $q$ equals to $N=160$ bits (thus $a$ and $k_{i}$ are $<2^{160}$ )

Attackers has messages $m_{i}$ with associated signatures $\left(r_{i}, s_{i}\right)$
$i=1, \ldots, n$
Implicit Hint
all ephemeral keys $k_{i}$ used to signed $m_{i}$ shared $\delta$ bits between their MSB/LSB:


Notice that $k_{i}, \tilde{k}_{i}, \mathbf{k}_{\mathbf{L}}$ and $\mathbf{k}_{\mathbf{M}}$ are unknown

## Shared MSB and LSB: first lattice

Implicit hypothesis:


Polynomial system modeling (two signatures):

$$
\mathcal{S}:\left\{\begin{array}{l}
k_{1} s_{1}=h_{1}+a r_{1} \bmod q \\
k_{2} s_{2}=h_{2}+a r_{2} \bmod q \\
k_{1}=k_{L}+2^{t} \tilde{k_{1}}+2^{t^{\prime}} k_{M} \\
k_{2}=k_{L}+2^{t} \tilde{k_{2}}+2^{t^{\prime}} k_{M}
\end{array}\right.
$$

## Shared MSB and LSB: first lattice

Implicit hypothesis:


Polynomial system modeling (two signatures):

$$
\mathcal{S}:\left\{\begin{array}{l}
\left(k_{L}+2^{t} \tilde{k_{1}}+2^{t^{\prime}} k_{M}\right) s_{1}=h_{1}+a r_{1} \bmod q \\
\left(k_{L}+2^{t} \tilde{k_{2}}+2^{t^{\prime}} k_{M}\right) s_{2}=h_{2}+a r_{2} \bmod q
\end{array}\right.
$$

## Shared MSB and LSB: first lattice

Implicit hypothesis:


Polynomial system modeling (two signatures):

$$
\mathcal{S}:\left\{\begin{array}{l}
\left(k_{L}+2^{t} \tilde{k_{1}}+2^{t^{\prime}} k_{M}\right) s_{1}=h_{1}+a r_{1} \bmod q \\
\left(k_{L}+2^{t} \tilde{k_{2}}+2^{t^{\prime}} k_{M}\right) s_{2}=h_{2}+a r_{2} \bmod q
\end{array}\right.
$$

Elimination of the variables $k_{L}$ and $k_{M}$ :

$$
2^{-t}\left(s_{1}^{-1} h_{1}-s_{2}^{-1} h_{2}\right)+2^{-t} a\left(s_{1}^{-1} r_{1}-s_{2}^{-1} r_{2}\right)-\left(\tilde{k_{1}}-\tilde{k_{2}}\right)=0 \quad \bmod q
$$

## Shared MSB and LSB: first lattice

Implicit hypothesis:


Polynomial system modeling (two signatures):

$$
2^{-t}\left(s_{1}^{-1} h_{1}-s_{2}^{-1} h_{2}\right)+2^{-t} a\left(s_{1}^{-1} r_{1}-s_{2}^{-1} r_{2}\right)-\left(\tilde{k_{1}}-\tilde{k_{2}}\right)=0 \quad \bmod q
$$

$F\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \alpha+x_{1} \beta-x_{2} \in \mathbb{F}_{q}\left[x_{0}, x_{1}, x_{2}\right]$ verifies $F\left(1, a, \kappa_{1,2}\right)=0$

- $\alpha=2^{-t}\left(s_{1}^{-1} h_{1}-s_{2}^{-1} h_{2}\right) \bmod q$
- $\beta=2^{-t}\left(s_{1}^{-1} r_{1}-s_{2}^{-1} r_{2}\right) \bmod q$
- $\kappa_{1,2}=\left(\tilde{k_{1}}-\tilde{k_{2}}\right)$


## Shared MSB and LSB: first lattice

Implicit hypothesis:


Polynomial system modeling (two signatures):

$$
F\left(x_{0}, x_{1}, x_{2}\right)=x_{0} \alpha+x_{1} \beta-x_{2} \in \mathbb{F}_{q}\left[x_{0}, x_{1}, x_{2}\right] \text { verifies } F\left(1, a, \kappa_{1,2}\right)=0
$$

The set of solutions $L$ of $F$ forms a lattice :

$$
L=\left\{\left(x_{0}, x_{1}, x_{2}\right) \in \mathbb{Z}^{3}: x_{0} \alpha+x_{1} \beta-x_{2}=0 \bmod q\right\}
$$

with $v_{0}=\left(1, a, \kappa_{1,2}\right) \in L$

## Shared MSB and LSB: first lattice ( $n>2$ signatures)

Implicit hypothesis:


Polynomial system modeling ( $n>2$ signatures):

$$
\left.\left.\begin{array}{c}
\left\{\begin{array}{ccc}
\alpha_{2}+a \beta_{2}-\kappa_{1,2} & \equiv 0 & (\bmod q) \\
\alpha_{3}+a \beta_{3}-\kappa_{1,3} & \equiv & 0 \\
\vdots & (\bmod q) \\
\alpha_{n}+a \beta_{n}-\kappa_{1, n} & \equiv & 0
\end{array} \quad(\bmod q)\right.
\end{array}\right\} \begin{array}{l}
\alpha_{i}=2^{-t}\left(s_{1}^{-1} m_{1}-s_{i}^{-1} m_{i}\right) \bmod q, \beta_{i}=2^{-t}\left(s_{1}^{-1} r_{1}-s_{i}^{-1} r_{i}\right) \bmod q, \kappa_{i, j}=\tilde{\mathbf{k}}_{i}-\tilde{\mathbf{k}}_{j}
\end{array}\right\} \begin{aligned}
& L=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{Z}^{n+1}: x_{0} \alpha_{i}+x_{1} \beta_{i}-x_{i}=0 \bmod q(i=2, \ldots, n)\right\} \\
& \text { with } v_{0}=\left(1, a, \kappa_{2}, \ldots, \kappa_{n}\right) \in L
\end{aligned}
$$

## Shared MSB and LSB: first lattice ( $n>2$ signatures)

$$
\begin{aligned}
L=\left\{\left(x_{0}, \ldots, x_{n}\right) \in\right. & \left.\mathbb{Z}^{n+1}: x_{0} \alpha_{i}+x_{1} \beta_{i}-x_{i}=0 \bmod q(i=2, \ldots, n)\right\} \\
& \text { with } v_{0}=\left(1, a, \kappa_{2}, \ldots, \kappa_{n}\right) \in L
\end{aligned}
$$

The lattice $L$ is generated by the row-vectors of the matrix

$$
M=\left(\begin{array}{ccccc}
1 & 0 & \alpha_{2} & \ldots & \alpha_{n} \\
0 & 1 & \beta_{2} & \ldots & \beta_{n} \\
0 & 0 & q & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & q
\end{array}\right)
$$

and $\left(1, \mathbf{a}, \lambda_{2}, \ldots, \lambda_{n}\right) \cdot M=v_{0}$ for some $\lambda_{i}$.

## Shared MSB and LSB: first lattice, first result

## Gaussian Assumption

If $\left\|v_{0}\right\|^{2}$ is smaller than $\frac{d}{2 \pi e} \operatorname{Vol}(L)^{\frac{2}{d}}$ then $v_{0}$ is a shortest vector of $L$. Here the dimension is $d=n+1$.

## Theorem 1

Let be given $n$ signatures $\left(r_{i}, s_{i}\right)$. Under the following assumptions

- Gaussian Assumption
- $2^{159-\delta} \leq a<2^{160-\delta}$

- Implicit hint: nonces $k_{i}$ share $\delta$ bits (LSB/MSB)

Then the vector $v_{0}$ is a shortest vector in $L$ as soon as

$$
\delta \geq \frac{320+(n-1)}{n+1}+\frac{1+\log _{2}(\pi e)-\log _{2}\left(\frac{n+1}{n}\right)}{2}
$$

$e x: 32$ bits shared $\Rightarrow 10$ signatures needed

## Shared MSB and LSB: improvement

The lattice $L$ is generated by the row-vectors of the matrix

$$
M=\left(\begin{array}{ccccc}
1 & 0 & \alpha_{2} & \ldots & \alpha_{n} \\
0 & 1 & \beta_{2} & \ldots & \beta_{n} \\
0 & 0 & q & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & q
\end{array}\right)
$$

and the vector $\left(1, \mathbf{a}, \lambda_{2}, \ldots, \lambda_{n}\right) \cdot M=\left(1, a, \kappa_{2}, \ldots, \kappa_{n}\right)=v_{0}$.
$\Rightarrow$ Cancel the second coefficient of $v_{0}$
$\Rightarrow$ Considering a new lattice $L$.

## Shared MSB and LSB: improvement

Let $L^{\prime}$ (dimension $n$ ) generated by the row-vectors of the matrix

$$
M^{\prime}=\left(\begin{array}{cccc}
1 & \alpha_{2} & \ldots & \alpha_{n} \\
0 & \beta_{2} & \ldots & \beta_{n} \\
0 & q & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & q
\end{array}\right)
$$

and the vector $\left(1, \mathbf{a}, \lambda_{2}, \ldots, \lambda_{n}\right) \cdot M^{\prime}=\left(1, \kappa_{2}, \ldots, \kappa_{n}\right)=v_{0}^{\prime}$.
$\Rightarrow$ The secret $a$ is no more contained in $v_{0}^{\prime}$
$\Rightarrow$ The matrix M do not form a basis of the lattice

## Shared MSB and LSB: improvement

## Theorem 2

Let be given $n$ signatures $\left(r_{i}, s_{i}\right)$. Under the following assumptions

- Gaussian Assumption
- $2^{159-\delta} \leq a<2^{160-\delta}$

- Implicit hint: nonces $k_{i}$ share $\delta$ bits (LSB/MSB)

Then the vector $v_{0}^{\prime}$ is a shortest vector in $L^{\prime}$ as soon as

$$
\delta \geq \frac{320+(n-2)}{n}+\frac{1+\log _{2}(\pi e)-\log _{2}\left(\frac{n}{n-1}\right)}{2}
$$

$e x: 32$ bits shared $\Rightarrow 11$ signatures needed

## Shared MSB and LSB: improvement bis

$\Rightarrow v_{0}^{\prime}=\left(1, \kappa_{2}, \ldots, \kappa_{n}\right)$, using weighted norm

$$
\left\langle\left(x_{0}, \ldots, x_{n}\right),\left(y_{0}, \ldots, y_{n}\right)\right\rangle:=\sum_{i=0}^{n} x_{i} y_{i} 2^{2\left(160-\left\lceil\log _{2}\left(v_{0, i}\right)\right\rceil\right)}
$$

## Theorem 3

Let be given $n$ signatures $\left(r_{i}, s_{i}\right)$. Under the following assumptions

- Gaussian Assumption

- Implicit hint: nonces $k_{i}$ share $\delta$ bits (LSB/MSB)

Then the vector $v_{0}^{\prime}$ is a shortest vector in $L^{\prime}$ as soon as

$$
\begin{equation*}
\delta \geq \frac{160+(n-2)}{n-1}+\frac{n\left(1+\log _{2}(\pi e)\right)}{2(n-1)} \tag{1}
\end{equation*}
$$

## Theoretical comparison


ex: 32 bits shared $\Rightarrow 7$ signatures needed

## Performing the computations

## Computation of a shortest vector

This is an NP-hard problem! The complexity is

- Exponential in $d$ by using Kannan's algorithm
- Polynomial in $d$ if $v_{0}$ can be found with LLL (Polynomial complexity but approximate (exponential $2^{d}$ ) shortest vector)
$\Rightarrow$ Experimented using LLL: we always obtain the private key
$\Rightarrow$ The computational time is not more than one minute (Magma 2.17)
$\Rightarrow$ In practice, the attack can be mounted with $\delta<3$


## Generalization: shared blocks

General implicit hint:

$\Rightarrow$ More technical but comparable results
ex with 3 blocks: 7 signatures $\rightarrow 37$ shared bits need

## Perspectives

## Remarks:

- ECDSA implicit attack can be applied mutatis mutandis on EIGamal or Schnorr signatures
- Backdoor in PRNG using such implicit hint are undetectable with Dieharder/STS

```
Perspectives:
```

- Implicit hints in other cryptosystems?
- Other kind of implicit hints ? (linear, polynomial relations, ... )
- New statistical tests ?


## Conclusion

- Additional information (even implicit) exploited with algebraic method on both symmetric and asymmetric cryptographic systems
- equivalent leakage models ?
- ex: implicit hint (DSA) $\Longleftrightarrow$ collisions (ASCA)

Faugère, Goyet, Renault, A new Criterion for Effective Algebraic Side Channel Attacks, COSADE 2011

Carlet, Faugère, Goyet, Renault,
An Analysis of Algebraic Side Channel Attacks, February 2012, Journal of Cryptographic Engineering
R
Faugère, Goyet, Renault,
Attacking (EC)DSA Given Only an Implicit Hint, SAC 2012

