Analysis of the Algebraic Side-Channel Attacks

C. Carlet¹ J.C. Faugère² C. Goyet^{2,3} G. Renault²

1: MTII team/LAGA/Paris 8

2: équipe SALSA/CNRS/INRIA/LIP6/UPMC

3: THALES Communications

THALES

Algebraic cryptanalysis

Algebraic Side-Channel Attacks (ASCA)

New kind of attacks recently by Renauld, Standaert and Veyrat-Charvillon (CHES 2009, Inscrypt2009) mixing **Power Analysis** and **algebraic cryptanalysis**

main idea of ASCA

- Online Phase: physical leakages measures
- Offline Phase: algebraic attack
 - modeling cipher and additionnal information by a system of equations
 - solving this system

- Blind Differential Cryptanalysis for Enhanced Power Attacks Handschuh, Preneel, Selected Areas in Cryptography 2006
- Multi-Linear cryptanalysis in Power Analysis Attacks Roche, Tavernier, 2009
- Algebraic Methods in Side-Channel Collision Attacks and Practical Collision Detection

 Bogdanov, Kizhvatov, Pyshkin, Indocrypt 2008
- Algebraic Side-Channel Attacks
 Renauld, Standaert, Inscrypt 2009
- Algebraic Side-Channel Attacks on the AES: Why Time also Matters in DPA

Renauld, Standaert, Veyrat-Charvillon, CHES 2009

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very **fast** (with a SAT-solver)
- can deal with masking countermeasure

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very fast (with a SAT-solver)
- can deal with masking countermeasure

However, the effectiveness depends on

- the device used and the quality of the trace
- the leakage model
- the amount of available information
- the shape of the system of equations (cipher modeling)
- the heuristics used in the SAT-solver
- ...

→ very difficult to explain and predict results of experiments

Main goal: analysis of algebraic phase

in order to explain the effectiveness of the solving step

Main goal: analysis of algebraic phase

in order to explain the effectiveness of the solving step

Our analysis of algebraic phase

- impact of the oracle model?
- how many oracle queries are needed?
- some queries more valuable than others?
- which cipher intermediate operations to target?

So, we need a more stable and predictable solving method than Sat-solver without heuristics \Longrightarrow Gröbner basis

Main goal: analysis of algebraic phase

Oracle model:

- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

PRESENT	PRESENT+Oracle
$Sat\text{-}Solver = \infty \ \mathbf{X}$	Sat-Solver $\simeq 1$ s 🗸
	(CHES 2009)
Gröbner basis $= \infty$ $ imes$	Gröbner basis (F4) ≃ 20min 🗸
	(our work)

 ∞ : more than one day of computation

Sat-Solver = Heuristics
$$\Rightarrow$$
 analysis

Gröbner basis = Algebraic resolution \Rightarrow theoretical analysis

Global to local study

Global to local study

- S-boxes are the only nonlinear part of many block ciphers
- They give the resistance against algebraic attacks

Main criterion to evaluate the algebraic resistance of a block cipher is the **Algebraic Immunity** of the S-boxes

 \Rightarrow We start to study the S-boxes

Algebraic Immunity (Carlet, Courtois, ...)

Main criterion for algebraic attack = Algebraic Immunity

Notations

- Let $S: \mathbb{F}_2^n \to \mathbb{F}_2^n$ be a n-bits S-box.
- X_1, \ldots, X_n and Y_1, \ldots, Y_n respectively its input and output bits.
- ullet $F_i(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$, $i\leq i\leq n$ are the functions defining ${\sf S}$

Definition of Algebraic Immunity (Ars, Courtois, Carlet, ...)

Let $I_S = \langle \{F_i(X_1, \dots, X_n, Y_1, \dots, Y_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\} \rangle$. Then the **Algebraic Immunity** of S is defined by

$$AI(S) = \min\{deg(P), P \in I_S \setminus \{0\}\}\$$

The number of such lowest degree relations is also an important invariant

Algebraic Immunity (Carlet, Courtois, ...)

How to compute the **Algebraic Immunity** for a given S-box S? It is enough to compute a Gröbner basis with the $\frac{DRL}{C}$ order of

$$I_S = \langle \{F_i(X_1, \dots, X_n, Y_1, \dots, Y_n), X_i^2 - X_i, Y_i^2 - Y_i, i \in \{1 \dots n\}\} \rangle$$

Indeed, we have

Proposition

The reduced Gröbner basis G_S of I_S with respect to a graded order contains a linear basis of the lowest relations of S (i.e. the polynomials $P \in I_S$ such that deg(P) = AI(S)).

Example with the AES S-box

The Algebraic Immunity of the inverse function over \mathbb{F}_{2^8} (e.g. AES S-box) equals **2**. Indeed, the inverse function is represented by a set of 39 quadratics equations over \mathbb{F}_2 (Courtois 2002)

A new notion of Algebraic Immunity

ASCA context ⇒ consider **leakage information**

Notations

For every value ℓ of the leakage model, we denote

- $E_{\ell}(X_1,\ldots,X_n,Y_1,\ldots,Y_n)$ the equations representing the leakage information ℓ
- $I_{\ell} = \langle E_{\ell}(X_1, \dots, X_n, Y_1, \dots, Y_n) \cup \{F_i(X_1, \dots, X_n, Y_1, \dots, Y_n), X_i^2 X_i, Y_i^2 Y_i, i \in \{1 \dots n\}\} \rangle$

Definition of Algebraic Immunity with Leakage

The lowest degree relations in I_{ℓ} are called **Algebraic Immunity With Leakage** ℓ of the S-box S. It is denoted by $AI_L(S,\ell)$ and the number of such relations is denoted by $\#AI_L(S,\ell)$.

Algebraic Immunity with Leakage: HW example

Assumption: leakage L of S gives

- HW of input value
- HW of output value
- $\ell = (w_{in}, w_{out})$
- \Rightarrow the ideal I_{ℓ} contains at least 2 independent linear polynomials:

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_{\ell}$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_{\ell}$$

Results

 \forall S-box S, and $\forall \ell \in \{0,...,n\}^2$

$$AI_L(S, \ell) = 1$$
$$\#AI_L(S, \ell) \ge 2$$

Are these two linear polynomials linearized our S-Box?

HW example $(\ell = (w_{in}, w_{out}))$

 \Rightarrow the ideal I_{ℓ} contains at least these 2 independent linear polynomials:

$$X_1 + \dots + X_n + (w_{in} \mod 2) \in I_{\ell}$$

$$Y_1 + \dots + Y_n + (w_{out} \mod 2) \in I_{\ell}$$

Does not help enough for solving our system:

- no linear relation between input and output
- substitution layer is always nonlinear

But now, we know that leakages may gives rise to linear equations!! Is there any other more interesting?

HW example $(\ell = (w_{in}, w_{out}))$

Trivial example: $w_{in} = 0$

 \forall S-box S, if $w_{in}=0$ then $X_1=X_2=\cdots=X_n=0$ and the Y_i are given by

$$Y_1, \ldots, Y_n = S(0, \ldots, 0) = y_1, \ldots, y_n$$

 $\#AI_L(S,\ell)=2n$ is maximal with this case and the corresponding S-box is completely described by linear relations

HW example $(\ell = (w_{in}, w_{out}))$

Trivial example: $w_{in} = 0$

 \forall S-box S, if $w_{in}=0$ then $X_1=X_2=\cdots=X_n=0$ and the Y_i are given by

$$Y_1, \ldots, Y_n = S(0, \ldots, 0) = y_1, \ldots, y_n$$

 $\#AI_L(S,\ell)=2n$ is maximal with this case and the corresponding S-box is completely described by linear relations

PRESENT S-box example: $\#AI_L(S,(w_{in},w_{out}))$

w_{in}	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

A lot of interesting linear equations can appear, depending on the leakage value

Another invariant

Definition

 \forall S-box S, \forall leakage value ℓ we define

$$N_S(\ell) = \#\{x \in \mathbb{F}_2^n \text{ s.t. leakage of } S(x) = \ell\}$$

= $\#V(I_\ell)$

Another invariant

Definition

 \forall S-box S, \forall leakage value ℓ we define

$$N_S(\ell) = \#\{x \in \mathbb{F}_2^n \text{ s.t. leakage of } S(x) = \ell\}$$

= $\#V(I_\ell)$

Prop

Let n the bus size of S. If $AI_L(S,\ell)=1$ and $N_S(\ell)$ is non-zero then

$$\#AI_L(S,\ell) \ge 2n + 1 - N_S(\ell)$$

 $N_S(\ell)$ small \rightsquigarrow a lot of linear relations

Take a look at PRESENT S-box

Assumptions: 8-bits bus and Hamming weight leakage model

		~							,
w_{in}	w_{out} 0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

Figure: $\#AI_L(S, w_{in}, w_{out})$

w_{in}	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Figure: $N_S(w_{in}, w_{out})$

Observations

- confirm that small $N_S \Rightarrow$ large $\#AI_S$
- We are now able to sort leakages by relevance
- Most of leakages give a lot of linear relations:
 E(#AI_T) = 7.9

Take a look at PRESENT S-box

Assumptions: 8-bits bus and Hamming weight leakage model

w_{in}	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

Figure: $\#AI_L(S, w_{in}, w_{out})$

w_{in}	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Observations

- confirm that small $N_S \Rightarrow$ large $\#AI_S$
- We are now able to sort leakages by relevance
- Most of leakages give a lot of linear relations:

$$\mathbb{E}(\#AI_L) = 7,9$$

Global Study

Solving strategy

- ullet triangular structure o blocks of equations (Layers, SBoxes, ...)
- ullet blocks corresponding to Sboxes o Gröbner basis of I_ℓ
- polynomial system modeling PRESENT partly linearized

Results:

Successive Gröbner basis computation (F4)

- \rightarrow better control on the degree
- \rightarrow better solving strategy

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher : PRESENT
- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

Because of:

- $AI_L = 1$
- $\mathbb{E}(\#AI_L) = 7,9$
- $\mathbb{P}(\#AI_L \ge 8) \approx \frac{1}{2}$
- \Rightarrow Expected linear relations for one substitution layer ≈ 64

Why this attack still work with weaker ASCA assumptions?

- with leakages in only 3 or 4 rounds?
- in unknown plaintext/ciphertext scenario?

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher : PRESENT
- Oracle gives 8-bits Hamming weights of output layers
- assumed error-free

Because of:

- $AI_L = 1$
- $\mathbb{E}(\#AI_L) = 7,9$
- $\mathbb{P}(\#AI_L \ge 8) \approx \frac{1}{2}$
- \Rightarrow Expected linear relations for one substitution layer ≈ 64

Why this attack still work with weaker ASCA assumptions?

- with leakages in only 3 or 4 rounds?
- in unknown plaintext/ciphertext scenario?

Few consecutive leakages or unknown P/C

Going back to the local study:

 $N_S(\ell)$ small \Rightarrow a lot of linear relations

 $N_S(\ell)$ very small $(\leq 6) \Rightarrow$ fixed input/output bits!!

→ subkey bits easily deduced

Resistant S-Boxes?

Requirements:

- few fixed bits
- few linear relations
- \rightsquigarrow maximizing N_S for a lot of leakages

A first classe: N_S max for all leakages

$$N_S(w_{in}, w_{out}) = \#(HW^{-1}(w_{in}) \bigcap S^{-1}(HW^{-1}(w_{out})))$$

Then, S must satisfy

$$HW^{-1}(w_{in}) = S^{-1}(HW^{-1}(w_{out}))$$

and

$$w_{in} = w_{out}$$
 or $w_{in} = n - w_{out}$

Resistant S-Boxes?

Example of such 4-bits S-box:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F S(x) 0 B 5 C E 6 9 8 7 5 3 1 A 2 4 F																	
S(x) 0 B 5 C F 6 9 8 7 5 3 1 A 2 4 F	x	0	1	2	3	4	5	6	7	8	9	Α	В	С	D	E	F
	S(x)	0	В	5	С	Е	6	9	8	7	5	3	1	Α	2	4	F

HW(x)	HW(S(x))
0	0
1	3
2	2
3	1
4	4

Characterization:

$$S(x) = \pi(x) + f(HW(x))(1, ..., 1)$$

- $\pi(x) = \text{stable permutation on constant HW}$
- $f = \text{boolean function s.t. } \forall x \in \{0, \dots, n\}, f(x) = f(n-x)$

However, nonlinearity $(S) \simeq 0 \Rightarrow \text{very weak against linear cryptanalysis}$

Experiments - Conclusion

Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments:

- GB
- reject of leakages with large N_S
 - reject of leakages with small N_S
- no consecutive leaked rounds
- checking resistant S-boxes
- ×

Experiments

Experiments performed against PRESENT and AES

Analysis supported by experiments: GB SAT-solver reject of leakages with large N_S reject of leakages with small N_S no consecutive leaked rounds checking resistant S-boxes SAT-solver X

Analysis is valid with both Gröbner basis and SAT-solver

Conclusion

- New notion of Algebraic Immunity
- Good understanding of influence of leakage information
 - Results of experiments are explained
 - Leakages informations can be sorted by importance
 - same analysis on Hamming Distance model

Perspectives

- Identify resistant S-boxes against ASCA and others cryptanalysis
- Study more realistic oracle models
- Dealing with errors