Analysis of the Algebraic Side-Channel Attacks

C. Carlet ${ }^{1} \quad$ J.C. Faugère ${ }^{2} \quad$ C. Goyet ${ }^{2,3} \quad$ G. Renault ${ }^{2}$
1: MTII team/LAGA/Paris 8
2 : équipe SALSA/CNRS/INRIA/LIP6/UPMC
3 : THALES Communications

THALES

UPmC

Algebraic cryptanalysis

> Solving
> \Downarrow
> find the secret key

Algebraic Side-Channel Attacks (ASCA)

New kind of attacks recently by Renauld, Standaert and Veyrat-Charvillon (CHES 2009, Inscrypt2009) mixing Power Analysis and algebraic cryptanalysis

main idea of ASCA

(1) Online Phase: physical leakages measures
(2) Offline Phase: algebraic attack

- modeling cipher and additionnal information by a system of equations
- solving this system

Blind Differential Cryptanalysis for Enhanced Power Attacks Handschuh，Preneel，Selected Areas in Cryptography 2006

囯 Multi－Linear cryptanalysis in Power Analysis Attacks Roche，Tavernier， 2009

围 Algebraic Methods in Side－Channel Collision Attacks and Practical Collision Detection
Bogdanov，Kizhvatov，Pyshkin，Indocrypt 2008
R－Algebraic Side－Channel Attacks
Renauld，Standaert，Inscrypt 2009
Algebraic Side－Channel Attacks on the AES：Why Time also Matters in DPA
Renauld，Standaert，Veyrat－Charvillon，CHES 2009
固 ．．．

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very fast (with a SAT-solver)
- can deal with masking countermeasure

Algebraic Side-Channel Attacks

Interesting aspects

- require much less observations than a DPA
- solving step seems very fast (with a SAT-solver)
- can deal with masking countermeasure

However, the effectiveness depends on

- the device used and the quality of the trace
- the leakage model
- the amount of available information
- the shape of the system of equations (cipher modeling)
- the heuristics used in the SAT-solver
\rightsquigarrow very difficult to explain and predict results of experiments

Main goal: analysis of algebraic phase in order to explain the effectiveness of the solving step

Main goal: analysis of algebraic phase

 in order to explain the effectiveness of the solving step

Our analysis of algebraic phase

- impact of the oracle model?
- how many oracle queries are needed?
- some queries more valuable than others?
- which cipher intermediate operations to target?

So, we need a more stable and predictable solving method than Sat-solver without heuristics \Longrightarrow Gröbner basis

Main goal: analysis of algebraic phase

Oracle model:

- Oracle gives 8 -bits Hamming weights of output layers
- assumed error-free

PRESENT	PRESENT + Oracle
Sat-Solver $=\infty \times$	Sat-Solver $\simeq 1 \mathrm{~s}$ (CHES 2009)
Gröbner basis $=\infty \times$	Gröbner basis (F4) $\simeq 20 \mathrm{~min}$ (our work)

∞ : more than one day of computation

Sat-Solver	$=\quad$ Heuristics	\Rightarrow	analysis
Gröbner basis	$=$	Algebraic resolution	\Rightarrow theoretical analysis

Global to local study

Global to local study

- S-boxes are the only nonlinear part of many block ciphers
- They give the resistance against algebraic attacks

Main criterion to evaluate the algebraic resistance of a block cipher is the Algebraic Immunity of the S-boxes

\Rightarrow We start to study the S-boxes

Algebraic Immunity (Carlet, Courtois, ...)

Main criterion for algebraic attack $=$ Algebraic Immunity

Notations

- Let $S: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}^{n}$ be a n-bits S-box.
- X_{1}, \ldots, X_{n} and Y_{1}, \ldots, Y_{n} respectively its input and output bits.
- $F_{i}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right), i \leq i \leq n$ are the functions defining S

Definition of Algebraic Immunity (Ars, Courtois, Carlet, ...)
Let $I_{S}=\left\langle\left\{F_{i}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right), X_{i}^{2}-X_{i}, Y_{i}^{2}-Y_{i}, i \in\{1 \ldots n\}\right\}\right\rangle$.
Then the Algebraic Immunity of S is defined by

$$
A I(S)=\min \left\{\operatorname{deg}(P), P \in I_{S} \backslash\{0\}\right\}
$$

The number of such lowest degree relations is also an important invariant

Algebraic Immunity (Carlet, Courtois, ...)

How to compute the Algebraic Immunity for a given S-box S ? It is enough to compute a Gröbner basis with the DRL order of

$$
I_{S}=\left\langle\left\{F_{i}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right), X_{i}^{2}-X_{i}, Y_{i}^{2}-Y_{i}, i \in\{1 \ldots n\}\right\}\right\rangle
$$

Indeed, we have

Proposition

The reduced Gröbner basis G_{S} of I_{S} with respect to a graded order contains a linear basis of the lowest relations of S (i.e. the polynomials $P \in I_{S}$ such that $\operatorname{deg}(P)=A I(S)$).

Example with the AES S-box

The Algebraic Immunity of the inverse function over $\mathbb{F}_{2^{8}}$ (e.g. AES S-box) equals 2. Indeed, the inverse function is represented by a set of 39 quadratics equations over \mathbb{F}_{2} (Courtois 2002)

A new notion of Algebraic Immunity

ASCA context \Rightarrow consider leakage information

Notations

For every value ℓ of the leakage model, we denote

- $E_{\ell}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)$ the equations representing the leakage information ℓ
- $I_{\ell}=\left\langle E_{\ell}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right) \cup\left\{F_{i}\left(X_{1}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right)\right.\right.$, $\left.\left.X_{i}^{2}-X_{i}, Y_{i}^{2}-Y_{i}, i \in\{1 \ldots n\}\right\}\right\rangle$

Definition of Algebraic Immunity with Leakage
The lowest degree relations in I_{ℓ} are called Algebraic Immunity With Leakage ℓ of the S-box S. It is denoted by $A I_{L}(S, \ell)$ and the number of such relations is denoted by $\# A I_{L}(S, \ell)$.

Algebraic Immunity with Leakage: HW example

Assumption : leakage L of S gives

- HW of input value
- HW of output value
- $\ell=\left(w_{\text {in }}, w_{\text {out }}\right)$
\Rightarrow the ideal I_{ℓ} contains at least 2 independent linear polynomials:

$$
\begin{aligned}
X_{1}+\cdots+X_{n}+\left(w_{\text {in }} \bmod 2\right) & \in I_{\ell} \\
Y_{1}+\cdots+Y_{n}+\left(w_{\text {out }} \bmod 2\right) & \in I_{\ell}
\end{aligned}
$$

Results

\forall S-box S, and $\forall \ell \in\{0, \ldots, n\}^{2}$

$$
\begin{aligned}
A I_{L}(S, \ell) & =1 \\
\# A I_{L}(S, \ell) & \geq 2
\end{aligned}
$$

Are these two linear polynomials linearized our S-Box?

HW example $\left(\ell=\left(w_{\text {in }}, w_{\text {out }}\right)\right)$

\Rightarrow the ideal I_{ℓ} contains at least these 2 independent linear polynomials:

$$
\begin{aligned}
X_{1}+\cdots+X_{n}+\left(w_{\text {in }} \bmod 2\right) & \in I_{\ell} \\
Y_{1}+\cdots+Y_{n}+\left(w_{\text {out }} \bmod 2\right) & \in I_{\ell}
\end{aligned}
$$

Does not help enough for solving our system:

- no linear relation between input and output
- substitution layer is always nonlinear

But now, we know that leakages may gives rise to linear equations!! Is there any other more interesting?

HW example $\left(\ell=\left(w_{\text {in }}, w_{\text {out }}\right)\right)$

Trivial example: $w_{i n}=0$
\forall S-box S, if $w_{i n}=0$ then $X_{1}=X_{2}=\cdots=X_{n}=0$ and the Y_{i} are given by

$$
Y_{1}, \ldots, Y_{n}=S(0, \ldots, 0)=y_{1}, \ldots, y_{n}
$$

$\# A I_{L}(S, \ell)=2 n$ is maximal with this case and the corresponding S-box is completely described by linear relations

HW example $\left(\ell=\left(w_{\text {in }}, w_{\text {out }}\right)\right)$
Trivial example: $w_{i n}=0$
\forall S-box S, if $w_{i n}=0$ then $X_{1}=X_{2}=\cdots=X_{n}=0$ and the Y_{i} are given by

$$
Y_{1}, \ldots, Y_{n}=S(0, \ldots, 0)=y_{1}, \ldots, y_{n}
$$

$\# A I_{L}(S, \ell)=2 n$ is maximal with this case and the corresponding S-box is completely described by linear relations

PRESENT S-box example: $\# A I_{L}\left(S,\left(w_{\text {in }}, w_{\text {out }}\right)\right)$

$w_{\text {in }}$	$w_{\text {out }}$	0	1	2	3	4	5	6	7
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

A lot of
interesting linear
equations can
appear, depending
on the leakage
value

Another invariant

Definition
 \forall S-box S, \forall leakage value ℓ
 we define

$$
\begin{aligned}
N_{S}(\ell) & =\#\left\{x \in \mathbb{F}_{2}^{n} \text { s.t. leakage of } S(x)=\ell\right\} \\
& =\# V\left(I_{\ell}\right)
\end{aligned}
$$

Another invariant

Definition

\forall S-box S, \forall leakage value ℓ
we define

$$
\begin{aligned}
N_{S}(\ell) & =\#\left\{x \in \mathbb{F}_{2}^{n} \text { s.t. leakage of } S(x)=\ell\right\} \\
& =\# V\left(I_{\ell}\right)
\end{aligned}
$$

Prop

Let n the bus size of S. If $A I_{L}(S, \ell)=1$ and $N_{S}(\ell)$ is non-zero then

$$
\# A I_{L}(S, \ell) \geq 2 n+1-N_{S}(\ell)
$$

$N_{S}(\ell)$ small \rightsquigarrow a lot of linear relations

Take a look at PRESENT S-box

Assumptions: 8-bits bus and Hamming weight leakage model

$w_{\text {in }}$	0	1	2	3	4	5	6	7	8
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

Figure: $\# A I_{L}\left(S, w_{\text {in }}, w_{\text {out }}\right)$

$w_{\text {in }} w_{\text {out }}$	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2			2	2	18	4	2		
3			8	12	8	20	8		
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Observations

- confirm that small $N_{S} \Rightarrow$ large $\# A I_{S}$
-

Figure: $N_{S}\left(w_{i n}, w_{o u t}\right)$

Take a look at PRESENT S-box

Assumptions: 8-bits bus and Hamming weight leakage model

$w_{\text {in }}$	$w_{\text {out }}$	0	1	2	3	4	5	6	7
0					16				
1					9				
2			15	15	8	13	15		
3			9	5	9	5	9		
4	16	15	14	2	11	3	12	13	16
5		13	13	2	7	10	11	13	
6		15	12	15	7	15	14		
7			13		13				
8			16						

Figure: $\# A I_{L}\left(S, w_{\text {in }}, w_{\text {out }}\right)$

$w_{\text {in }} w_{\text {out }}$	0	1	2	3	4	5	6	7	8
0					1				
1					8				
2		2	2	18	4	2			
3		8	12	8	20	8			
4	1	2	3	24	7	22	6	4	1
5		4	4	16	12	8	8	4	
6		2	6	2	12	2	4		
7			4		4				
8			1						

Observations

- confirm that small $N_{S} \Rightarrow$ large $\# A I_{S}$
- We are now able to sort leakages by relevance
- Most of leakages give a lot of linear relations:
$\mathbb{E}\left(\# A I_{L}\right)=7,9$

Global Study

Solving strategy

- triangular structure \rightarrow blocks of equations (Layers, SBoxes, ...)
- blocks corresponding to Sboxes \rightarrow Gröbner basis of I_{ℓ}
- polynomial system modeling PRESENT partly linearized

Results:

Successive Gröbner basis computation (F4)
\rightarrow better control on the degree
\rightarrow better solving strategy

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher: PRESENT
- Oracle gives 8 -bits Hamming weights of output layers
- assumed error-free

Because of:

- $A I_{L}=1$
- $\mathbb{E}\left(\# A I_{L}\right)=7,9$
- $\mathbb{P}\left(\# A I_{L} \geq 8\right) \approx \frac{1}{2}$
\Rightarrow Expected linear relations for one substitution layer ≈ 64

Why this attack still work with weaker ASCA assumptions?

- with leakages in only 3 or 4 rounds?
- in unknown plaintext/ciphertext scenario?

Criterion of success

Attack with following assumptions is explained:

- a very simple SPN block cipher: PRESENT
- Oracle gives 8 -bits Hamming weights of output layers
- assumed error-free

Because of:

- $A I_{L}=1$
- $\mathbb{E}\left(\# A I_{L}\right)=7,9$
- $\mathbb{P}\left(\# A I_{L} \geq 8\right) \approx \frac{1}{2}$
\Rightarrow Expected linear relations for one substitution layer ≈ 64

Why this attack still work with weaker ASCA assumptions?

- with leakages in only 3 or 4 rounds?
- in unknown plaintext/ciphertext scenario?

Few consecutive leakages or unknown P / C

Going back to the local study:

$N_{S}(\ell)$ small \Rightarrow a lot of linear relations
$N_{S}(\ell)$ very small $(\leq 6) \Rightarrow$ fixed input/output bits!!

\rightsquigarrow subkey bits easily deduced

Resistant S-Boxes ?

Requirements:

- few fixed bits
- few linear relations
\rightsquigarrow maximizing N_{S} for a lot of leakages
A first classe: N_{S} max for all leakages

$$
N_{S}\left(w_{\text {in }}, w_{\text {out }}\right)=\#\left(H W^{-1}\left(w_{\text {in }}\right) \bigcap S^{-1}\left(H W^{-1}\left(w_{\text {out }}\right)\right)\right)
$$

Then, S must satisfy

$$
H W^{-1}\left(w_{i n}\right)=S^{-1}\left(H W^{-1}\left(w_{o u t}\right)\right)
$$

and

$$
w_{\text {in }}=w_{\text {out }} \text { or } w_{\text {in }}=n-w_{\text {out }}
$$

Resistant S-Boxes ?

Example of such 4-bits S-box:

Characterization:

$$
S(x)=\pi(x)+f(H W(x))(1, \ldots, 1)
$$

- $\pi(x)=$ stable permutation on constant HW
- $f=$ boolean function s.t. $\forall x \in\{0, \ldots, n\}, f(x)=f(n-x)$

However, nonlinearity $(S) \simeq 0 \Rightarrow$ very weak against linear cryptanalysis

Experiments - Conclusion

Experiments

Experiments performed against PRESENT and AES
Analysis supported by experiments:

> GB

- reject of leakages with large N_{S}
- reject of leakages with small N_{S}
- no consecutive leaked rounds
- checking resistant S-boxes

Experiments

Experiments performed against PRESENT and AES
Analysis supported by experiments:
GB SAT-solver

- reject of leakages with large N_{S}
- reject of leakages with small N_{S}
- no consecutive leaked rounds
- checking resistant S-boxes

Analysis is valid with both Gröbner basis and SAT-solver

Conclusion

- New notion of Algebraic Immunity
- Good understanding of influence of leakage information
- Results of experiments are explained
- Leakages informations can be sorted by importance
- same analysis on Hamming Distance model

Perspectives

- Identify resistant S-boxes against ASCA and others cryptanalysis
- Study more realistic oracle models
- Dealing with errors

